期刊文献+
共找到414篇文章
< 1 2 21 >
每页显示 20 50 100
Nondestructive detection and classification of impurities-containing seed cotton based on hyperspectral imaging and one-dimensional convolutional neural network 被引量:1
1
作者 Yeqi Fei Zhenye Li +2 位作者 Tingting Zhu Zengtao Chen Chao Ni 《Digital Communications and Networks》 2025年第2期308-316,共9页
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textile... The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing. 展开更多
关键词 Seed cotton Film impurity hyperspectral imaging Band optimization CLASSIFICATION
在线阅读 下载PDF
Variety classification and identification of maize seeds based on hyperspectral imaging method 被引量:1
2
作者 XUE Hang XU Xiping MENG Xiang 《Optoelectronics Letters》 2025年第4期234-241,共8页
In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering... In this study,eight different varieties of maize seeds were used as the research objects.Conduct 81 types of combined preprocessing on the original spectra.Through comparison,Savitzky-Golay(SG)-multivariate scattering correction(MSC)-maximum-minimum normalization(MN)was identified as the optimal preprocessing technique.The competitive adaptive reweighted sampling(CARS),successive projections algorithm(SPA),and their combined methods were employed to extract feature wavelengths.Classification models based on back propagation(BP),support vector machine(SVM),random forest(RF),and partial least squares(PLS)were established using full-band data and feature wavelengths.Among all models,the(CARS-SPA)-BP model achieved the highest accuracy rate of 98.44%.This study offers novel insights and methodologies for the rapid and accurate identification of corn seeds as well as other crop seeds. 展开更多
关键词 feature extraction extract feature wavelengthsclassification models variety classification hyperspectral imaging combined preprocessing competitive adaptive reweighted sampling cars successive projections algorithm spa PREPROCESSING maize seeds
原文传递
Hyperspectral imaging for one-step growth simulation of Brochothrix thermosphacta in chilled beef during storage
3
作者 Xiaohua Liu Binjing Zhou +7 位作者 Jin Song Kang Tu Jing Peng Weijie Lan Jing Xu Jie Wu Juqing Wu Leiqing Pan 《Food Science and Human Wellness》 2025年第1期226-235,共10页
In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate... In this work,one-step growth models using hyperspectral imaging(HSI)(400-1000 nm)were successfully developed in order to estimate the microbial loads,minimum growth temperature(T_(min))and maximum specific growth rate(μ_(max))of Brochothrix thermosphacta in chilled beef at isothermal temperatures(4-25℃).Three different methods were compared for model development,particularly using(Model Ⅰ)the predicted microbial loads from partial least squares regression of the whole spectral variables;(Model Ⅱ)the selected spectral variables related to microbial loads;and(Model Ⅲ)the first principal scores of HSI spectra by principal component analysis.Consequently,Model Ⅰ showed the best ability to predict the microbial loads of B.thermosphacta,with the coefficient of determination(R_(v)^(2))and root mean square error in internal validation(RMSEV)of 0.921 and 0.498(lg(CFU/g)).The T_(min)(-12.32℃)andμmax can be well estimated with R^(2) and root mean square error(RMSE)of 0.971 and 0.276(lg(CFU/g)),respectively.The upward trend ofμmax with temperature was similar to that of the plate count method.HSI technique thus can be used as a simple method for one-step growth simulation of B.thermosphacta in chilled beef during storage. 展开更多
关键词 Brochothrix thermosphacta BEEF hyperspectral imaging Growth simulation One-step analysis Predictive microbiology
在线阅读 下载PDF
Hyperspectral image restoration using noise gradient and dual priors under mixed noise conditions
4
作者 Hazique Aetesam Suman Kumar Maji V.B.Surya Prasath 《CAAI Transactions on Intelligence Technology》 2025年第1期72-93,共22页
Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic spectrum.However,due to sensor limitations and imperfections during ... Images obtained from hyperspectral sensors provide information about the target area that extends beyond the visible portions of the electromagnetic spectrum.However,due to sensor limitations and imperfections during the image acquisition and transmission phases,noise is introduced into the acquired image,which can have a negative impact on downstream analyses such as classification,target tracking,and spectral unmixing.Noise in hyperspectral images(HSI)is modelled as a combination from several sources,including Gaussian/impulse noise,stripes,and deadlines.An HSI restoration method for such a mixed noise model is proposed.First,a joint optimisation framework is proposed for recovering hyperspectral data corrupted by mixed Gaussian-impulse noise by estimating both the clean data as well as the sparse/impulse noise levels.Second,a hyper-Laplacian prior is used along both the spatial and spectral dimensions to express sparsity in clean image gradients.Third,to model the sparse nature of impulse noise,anℓ_(1)−norm over the impulse noise gradient is used.Because the proposed methodology employs two distinct priors,the authors refer to it as the hyperspectral dual prior(HySpDualP)denoiser.To the best of authors'knowledge,this joint optimisation framework is the first attempt in this direction.To handle the non-smooth and nonconvex nature of the generalℓ_(p)−norm-based regularisation term,a generalised shrinkage/thresholding(GST)solver is employed.Finally,an efficient split-Bregman approach is used to solve the resulting optimisation problem.Experimental results on synthetic data and real HSI datacube obtained from hyperspectral sensors demonstrate that the authors’proposed model outperforms state-of-the-art methods,both visually and in terms of various image quality assessment metrics. 展开更多
关键词 hyper-laplacian prior hyperspectral images image restoration mixed noise variational approach
在线阅读 下载PDF
Impact of hyperspectral reconstruction techniques on the quantitative inversion of rice physiological parameters:A case study using the MST++model
5
作者 Weiguang Yang Bin Zhang +3 位作者 Weicheng Xu Shiyuan Liu Yubin Lan Lei Zhang 《Journal of Integrative Agriculture》 2025年第7期2540-2557,共18页
Quantitative inversion is a major topic in remote sensing science.The development of visible light-based hyperspectral reconstruction techniques has opened novel prospects for low-cost,high-precision remote sensing in... Quantitative inversion is a major topic in remote sensing science.The development of visible light-based hyperspectral reconstruction techniques has opened novel prospects for low-cost,high-precision remote sensing inversion in agriculture.The aim of this study was to assess the effectiveness of hyperspectral reconstruction technology in agricultural remote sensing applications.Hyperspectral images were reconstructed using the MST++hyperspectral reconstruction model and compared with the original visible light images in terms of their correlations with physiological parameters,the accuracy of single-feature modeling,and the accuracy of combined feature modeling.The results showed that compared to the visible light image,the reconstructed data exhibited a stronger correlation with the measured physiological parameters,and the accuracy was improved for both the single feature and combined feature inversion modes.However,compared to multispectral sensors,hyperspectral reconstruction provided limited improvement of the inversion model accuracy.The results suggest that for physiological parameters that are not easy to observe directly,deep mining of features in visible light data through hyperspectral reconstruction technology can improve the accuracy of the inversion model.However,appropriate feature selection and simple models are more suitable for the remote sensing inversion task of traditional agronomic plot experiments.To strengthen the application of hyperspectral reconstruction technology in agricultural remote sensing,further development is necessary with broader wavelength ranges and more diverse agricultural scenarios. 展开更多
关键词 multistage spectral-wise transformer hyperspectral reconstruction RICE dry matter content HEIGHT
在线阅读 下载PDF
Introducing hyperspectral imaging as a novel tool for assessing donor liver quality during machine perfusion:A case report
6
作者 Mohamed El-Mahrouk Cord Langner +1 位作者 Robert Sucher Daniela Kniepeiss 《World Journal of Transplantation》 2025年第3期257-262,共6页
BACKGROUND Hyperspectral imaging(HSI)offers useful information on organ quality and has already been successfully used in kidney and liver transplantation to assess transplanted organs.Up to now,there is no case repor... BACKGROUND Hyperspectral imaging(HSI)offers useful information on organ quality and has already been successfully used in kidney and liver transplantation to assess transplanted organs.Up to now,there is no case report in the literature describing HSI for quality assessment of a machine perfused donor liver.The allocated liver from a 49-year-old female donor(161 cm,70 kg)was perfused with the OrganOx®normothermic machine perfusion system in the recommended way.Organ quality assessment was performed based on laboratory values at defined time points.In addition,the final evaluation of the liver comprised macroscopic findings and HSI of each liver segment.After discarding the organ,biopsies were taken from each segment and correlated with the results of the HSI.CASE SUMMARY The donor liver’s size(29 cm×17 cm×11 cm)and weight of 2180 g posed challenges for adequate placement within the organ container.Baseline biopsy of the liver revealed no evidence of fibrosis,steatosis or inflammation.An hour after perfusion start,measurements of the perfusate indicated a pH of 7.18,a glucose level of 404 mg/dL,and a lactate level of 1.7 mmol/L.Throughout perfusion,a significant decline in glucose levels began at the fourth hour,reaching a nadir of 20 mg/dL after eight hours.Concurrently,lactate levels steadily rose,peaking at 4.9 mmol/L after the total perfusion time of 12 hours.Macroscopic alterations(signs of congestion and reduced blood circulation)on the liver’s surface were noted,particularly pronounced in segments 2,3,and 8.HSI of these areas unveiled significant reduced oxygenation.Consequently,based on all these observations,the decision was made to discard the organ.Histological examination of the altered regions revealed congestion,necrotic changes,and dissociation of CONCLUSION This case report describes the integration of HSI in the decision making of the decline of a 49-year-old machine perfused donor liver.HSI offered useful information concerning the tissue morphology and graft viability and could therefore be a useful additional tool in assessing donor liver quality before transplantation. 展开更多
关键词 Liver transplantation Organ transplantation Normothermic machine perfusion hyperspectral imaging Case report
暂未订购
Detection of Rice Bacterial Leaf Blight Using Hyperspectral Technology and Continuous Wavelet Analysis
7
作者 Kaihao Shi Lin Yuan +5 位作者 Qimeng Yu Zhongting Shen Yingtan Yu Chenwei Nie Xingjian Zhou Jingcheng Zhang 《Phyton-International Journal of Experimental Botany》 2025年第7期2033-2054,共22页
Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-ban... Plant diseases are a major threat that can severely impact the production of agriculture and forestry.This can lead to the disruption of ecosystem functions and health.With its ability to capture continuous narrow-band spectra,hyperspectral technology has become a crucial tool to monitor crop diseases using remote sensing.However,existing continuous wavelet analysis(CWA)methods suffer from feature redundancy issues,while the continuous wavelet projection algorithm(CWPA),an optimization approach for feature selection,has not been fully validated to monitor plant diseases.This study utilized rice bacterial leaf blight(BLB)as an example by evaluating the performance of four wavelet basis functions-Gaussian2,Mexican hat,Meyer,andMorlet-within theCWAandCWPAframeworks.Additionally,the classification models were constructed using the k-nearest neighbors(KNN),randomforest(RF),and Naïve Bayes(NB)algorithms.The results showed the following:(1)Compared to traditional CWA,CWPA significantly reduced the number of required features.Under the CWPA framework,almost all the model combinations achieved maximum classification accuracy with only one feature.In contrast,the CWA framework required three to seven features.(2)Thechoice of wavelet basis functions markedly affected the performance of themodel.Of the four functions tested,the Meyer wavelet demonstrated the best overall performance in both the CWPA and CWA frameworks.(3)Under theCWPAframework,theMeyer-KNNandMeyer-NBcombinations achieved the highest overall accuracy of 93.75%using just one feature.In contrast,under the CWA framework,the CWA-RF combination achieved comparable accuracy(93.75%)but required six features.This study verified the technical advantages of CWPA for monitoring crop diseases,identified an optimal wavelet basis function selection scheme,and provided reliable technical support to precisely monitor BLB in rice(Oryza sativa).Moreover,the proposed methodological framework offers a scalable approach for the early diagnosis and assessment of plant stress,which can contribute to improved accuracy and timeliness when plant stress is monitored. 展开更多
关键词 hyperspectral continuous wavelet analysis continuous wavelet projection algorithm wavelet basis function disease monitoring
在线阅读 下载PDF
A Hyperspectral Image Classification Based on Spectral Band Graph Convolutional and Attention⁃Enhanced CNN Joint Network
8
作者 XU Chenjie LI Dan KONG Fanqiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期102-120,共19页
Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the... Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data. 展开更多
关键词 hyperspectral classification spectral band graph convolutional network attention-enhance convolutional network dynamic attention feature extraction feature fusion
在线阅读 下载PDF
Hyperspectral Image Super-Resolution Based on Spatial-Spectral-Frequency Multidimensional Features
9
作者 Sifan Zheng Tao Zhang +3 位作者 Haibing Yin Hao Hu Jian Jiang Chenggang Yan 《Journal of Beijing Institute of Technology》 2025年第1期28-41,共14页
Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi... Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance. 展开更多
关键词 deep neural network hyperspectral image spatial feature spectral information frequency feature
在线阅读 下载PDF
Hyperspectral Image Reconstruction for Interferometric Spectral Imaging System with Degradation Synthesis
10
作者 Yuansheng Li Xiangpeng Feng +2 位作者 Siyuan Li Geng Zhang Ying Fu 《Journal of Beijing Institute of Technology》 2025年第1期42-56,共15页
Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferome... Among hyperspectral imaging technologies, interferometric spectral imaging is widely used in remote sening due to advantages of large luminous flux and high resolution. However, with complicated mechanism, interferometric imaging faces the impact of multi-stage degradation. Most exsiting interferometric spectrum reconstruction methods are based on tradition model-based framework with multiple steps, showing poor efficiency and restricted performance. Thus, we propose an interferometric spectrum reconstruction method based on degradation synthesis and deep learning.Firstly, based on imaging mechanism, we proposed an mathematical model of interferometric imaging to analyse the degradation components as noises and trends during imaging. The model consists of three stages, namely instrument degradation, sensing degradation, and signal-independent degradation process. Then, we designed calibration-based method to estimate parameters in the model, of which the results are used for synthesizing realistic dataset for learning-based algorithms.In addition, we proposed a dual-stage interferogram spectrum reconstruction framework, which supports pre-training and integration of denoising DNNs. Experiments exhibits the reliability of our degradation model and synthesized data, and the effectiveness of the proposed reconstruction method. 展开更多
关键词 hyperspectral imaging degradation modeling data synthesis spectral reconstruction
在线阅读 下载PDF
Hyperspectral imagery quality assessment and band reconstruction using the prophet model
11
作者 Ping Ma Jinchang Ren +2 位作者 Zhi Gao Yinhe Li Rongjun Chen 《CAAI Transactions on Intelligence Technology》 2025年第1期47-61,共15页
In Hyperspectral Imaging(HSI),the detrimental influence of noise and distortions on data quality is profound,which has severely affected the following-on analytics and decisionmaking such as land mapping.This study pr... In Hyperspectral Imaging(HSI),the detrimental influence of noise and distortions on data quality is profound,which has severely affected the following-on analytics and decisionmaking such as land mapping.This study presents an innovative framework for assessing HSI band quality and reconstructing the low-quality bands,based on the Prophet model.By introducing a comprehensive quality metric to start,the authors approach factors in both spatial and spectral characteristics across local and global scales.This metric effectively captures the intricate noise and distortions inherent in the HSI data.Subsequently,the authors employ the Prophet model to forecast information within the low-quality bands,leveraging insights from neighbouring high-quality bands.To validate the effectiveness of the authors’proposed model,extensive experiments on three publicly available uncorrected datasets are conducted.In a head-to-head comparison,the framework against six state-ofthe-art band reconstruction algorithms including three spectral methods,two spatialspectral methods and one deep learning method is benchmarked.The authors’experiments also delve into strategies for band selection based on quality metrics and the quality evaluation of the reconstructed bands.In addition,the authors assess the classification accuracy utilising these reconstructed bands.In various experiments,the results consistently affirm the efficacy of the authors’method in HSI quality assessment and band reconstruction.Notably,the authors’approach obviates the need for manually prefiltering of noisy bands.This comprehensive framework holds promise in addressing HSI data quality concerns whilst enhancing the overall utility of HSI. 展开更多
关键词 band reconstruction band quality hyperspectral image(HSI) prophet model
在线阅读 下载PDF
Adulteration Recognition Between Taoren and Xingren by Hyperspectral Non-destructive Technology with Mixed Metaheuristics RBF-SVM Model
12
作者 Xu Hongzhao Zhao Qinghe +2 位作者 Liu Huaxi Zhang Zifang Fang Junlong 《Journal of Northeast Agricultural University(English Edition)》 2025年第2期66-81,共16页
Taoren and Xingren are commonly used herbs in East Asian medicine with different medication functions but huge economic differences,and there are cases of adulterated sales in market transactions.An effective adultera... Taoren and Xingren are commonly used herbs in East Asian medicine with different medication functions but huge economic differences,and there are cases of adulterated sales in market transactions.An effective adulteration recognition based on hyperspectral technology and machine learning was designed as a non-destructive testing method in this paper.A hyperspectral dataset comprising 500 Taoren and 500 Xingren samples was established;six feature selection methods were considered in the modeling of radial basis function-support vector machine(RBF-SVM),whose interaction between the two optimization methods was further researched.Two mixed metaheuristics modeling methods,Mixed-PSO and Mixed-SA,were designed,which fused both band selection and hyperparameter optimization from two-stage into one with detailed process analysis.The metrics of this mixed model were improved by comparing with traditional two-stage method.The accuracy of Mixed-PSO was 89.2%in five-floods crossvalidation that increased 4.818%than vanilla RBF-SVM;the accuracy of Mixed-SA was 88.7%which could reach the same as the traditional two-stage method,but it only relied on 48 crux bands in full 100 bands in RBF-SVM model fitting. 展开更多
关键词 hyperspectral technology adulteration recognition machine learning
在线阅读 下载PDF
Improving signal strength of tree rings for paleoclimate reconstruction by micro-hyperspectral imaging
13
作者 Yinghao Sun Teng Fei +3 位作者 Yonghong Zheng Yonggai Zhuang Lingjun Wang Meng Bian 《Geo-Spatial Information Science》 CSCD 2024年第5期1657-1674,共18页
In dendroclimatology,tree ring chronology is ordinarily established to reveal the fluctuation law of climate change on the interannual,interdecadal,and centennial scales.However,since traditional dendrochronology can ... In dendroclimatology,tree ring chronology is ordinarily established to reveal the fluctuation law of climate change on the interannual,interdecadal,and centennial scales.However,since traditional dendrochronology can only use one variable(tree ring width)to reflect environmentally related information,this causes the richer information recorded in the tree rings to be discarded.In this study,we examined the potential of hyperspectral chronological indices(shortened as“hyperspectral index/indices”)with samples collected in Shennongjia woodland in central China.The correlation analysis of the tree ring series on different samples indicated that hyperspectral indices outperform the traditional width index in chronology statistics including Signal-to-noise Ratio(SNR)and Expressed Population Signal(EPS).The reliability test shows that hyperspectral chronologies have more periods reaching the threshold of EPS or Subsample Signal Strength(SSS)>0.85,which means that hyperspectral chronologies provide more reliable periods for accurate climate reconstruction.Based on this,chronologies built by the three dendroclimatic indices were used to reconstruct the average temperature changes in Shennongjia over the last 103 years.The reconstruction results indicate that in our study area,the traditional width index model failed the split-sample calibration test and exhibited a low reconstruction accuracy,while the hyperspectral index model has a higher explained variance of 46.4%(p<0.01),compared to the width index(21.4%)and the grayscale index(38.3%).Our research results show that hyperspectral indices have greater potential for climate reconstruction in regions with lower susceptibility to climate stress.This is attributed to their ability to effectively extract subtle climate signals from the spectral variations on the surface of tree rings.Such ring spectral changes may be caused by complex and currently unknown responses of the trees to the climate. 展开更多
关键词 Common signal strength hyperspectral indices microscopic hyperspectral imaging past climate reconstruction tree ring width
原文传递
Multiscale Fusion Transformer Network for Hyperspectral Image Classification 被引量:2
14
作者 Yuquan Gan Hao Zhang Chen Yi 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期255-270,共16页
Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification... Convolutional neural network(CNN)has excellent ability to model locally contextual information.However,CNNs face challenges for descripting long-range semantic features,which will lead to relatively low classification accuracy of hyperspectral images.To address this problem,this article proposes an algorithm based on multiscale fusion and transformer network for hyperspectral image classification.Firstly,the low-level spatial-spectral features are extracted by multi-scale residual structure.Secondly,an attention module is introduced to focus on the more important spatialspectral information.Finally,high-level semantic features are represented and learned by a token learner and an improved transformer encoder.The proposed algorithm is compared with six classical hyperspectral classification algorithms on real hyperspectral images.The experimental results show that the proposed algorithm effectively improves the land cover classification accuracy of hyperspectral images. 展开更多
关键词 hyperspectral image land cover classification MULTI-SCALE TRANSFORMER
在线阅读 下载PDF
Method for evaluation of geological strength index of carbonate cliff rocks:Coupled hyperspectral-digital borehole image technique 被引量:1
15
作者 Haiqing Yang Guizhong Huang +3 位作者 Chiwei Chen Yong Yang Qi Wang Xionghui Dai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4204-4215,共12页
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara... The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass. 展开更多
关键词 hyperspectral image Digital panoramic borehole image Geological strength index Carbonate rock mass Quantitative evaluation
在线阅读 下载PDF
Hyperspectral Image Super-Resolution Network Based on Reinforcing Inter-Spectral Incremental Information 被引量:1
16
作者 Jialong Liang Qiang Li +2 位作者 Size Wang Charles Okanda Nyatega Xin Guan 《Journal of Beijing Institute of Technology》 EI CAS 2024年第4期307-325,共19页
Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identi... Hyperspectral images typically have high spectral resolution but low spatial resolution,which impacts the reliability and accuracy of subsequent applications,for example,remote sensingclassification and mineral identification.But in traditional methods via deep convolution neural net-works,indiscriminately extracting and fusing spectral and spatial features makes it challenging toutilize the differentiated information across adjacent spectral channels.Thus,we proposed a multi-branch interleaved iterative upsampling hyperspectral image super-resolution reconstruction net-work(MIIUSR)to address the above problems.We reinforce spatial feature extraction by integrat-ing detailed features from different receptive fields across adjacent channels.Furthermore,we pro-pose an interleaved iterative upsampling process during the reconstruction stage,which progres-sively fuses incremental information among adjacent frequency bands.Additionally,we add twoparallel three dimensional(3D)feature extraction branches to the backbone network to extractspectral and spatial features of varying granularity.We further enhance the backbone network’sconstruction results by leveraging the difference between two dimensional(2D)channel-groupingspatial features and 3D multi-granularity features.The results obtained by applying the proposednetwork model to the CAVE test set show that,at a scaling factor of×4,the peak signal to noiseratio,spectral angle mapping,and structural similarity are 37.310 dB,3.525 and 0.9438,respec-tively.Besides,extensive experiments conducted on the Harvard and Foster datasets demonstratethe superior potential of the proposed model in hyperspectral super-resolution reconstruction. 展开更多
关键词 image processing hyperspectral image super-solution incremental information
在线阅读 下载PDF
Feature extraction and analysis of reclaimed vegetation in ecological restoration area of abandoned mines based on hyperspectral remote sensing images
17
作者 MAO Zhengjun WANG Munan +3 位作者 CHU Jiwei SUN Jiewen LIANG Wei YU Haiyong 《Journal of Arid Land》 SCIE CSCD 2024年第10期1409-1425,共17页
The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric ... The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation. 展开更多
关键词 hyperspectral remote sensing abandoned mine ecological restoration vegetation growth status vegetation index vegetation coverage
在线阅读 下载PDF
Quantification of the adulteration concentration of palm kernel oil in virgin coconut oil using near-infrared hyperspectral imaging
18
作者 Phiraiwan Jermwongruttanachai Siwalak Pathaveerat Sirinad Noypitak 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期298-309,共12页
The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production ... The adulteration concentration of palm kernel oil(PKO)in virgin coconut oil(VCO)was quantified using near-infrared(NIR)hyperspectral imaging.Nowadays,some VCO is adulterated with lower-priced PKO to reduce production costs,which diminishes the quality of the VCO.This study used NIR hyperspectral imaging in the wavelength region 900-1,650 nm to create a quantitative model for the detection of PKO contaminants(0-100%)in VCO and to develop predictive mapping.The prediction equation for the adulteration of VCO with PKO was constructed using the partial least squares regression method.The best predictive model was pre-processed using the standard normal variate method,and the coefficient of determination of prediction was 0.991,the root mean square error of prediction was 2.93%,and the residual prediction deviation was 10.37.The results showed that this model could be applied for quantifying the adulteration concentration of PKO in VCO.The prediction adulteration concentration mapping of VCO with PKO was created from a calibration model that showed the color level according to the adulteration concentration in the range of 0-100%.NIR hyperspectral imaging could be clearly used to quantify the adulteration of VCO with a color level map that provides a quick,accurate,and non-destructive detection method. 展开更多
关键词 virgin coconut oil ADULTERATION CONTAMINATION palm kernel oil hyperspectral imaging
在线阅读 下载PDF
Hyperspectral Image Based Interpretable Feature Clustering Algorithm
19
作者 Yaming Kang PeishunYe +1 位作者 Yuxiu Bai Shi Qiu 《Computers, Materials & Continua》 SCIE EI 2024年第5期2151-2168,共18页
Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analy... Hyperspectral imagery encompasses spectral and spatial dimensions,reflecting the material properties of objects.Its application proves crucial in search and rescue,concealed target identification,and crop growth analysis.Clustering is an important method of hyperspectral analysis.The vast data volume of hyperspectral imagery,coupled with redundant information,poses significant challenges in swiftly and accurately extracting features for subsequent analysis.The current hyperspectral feature clustering methods,which are mostly studied from space or spectrum,do not have strong interpretability,resulting in poor comprehensibility of the algorithm.So,this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.It commences with a simulated perception process,proposing an interpretable band selection algorithm to reduce data dimensions.Following this,amulti-dimensional clustering algorithm,rooted in fuzzy and kernel clustering,is developed to highlight intra-class similarities and inter-class differences.An optimized P systemis then introduced to enhance computational efficiency.This system coordinates all cells within a mapping space to compute optimal cluster centers,facilitating parallel computation.This approach diminishes sensitivity to initial cluster centers and augments global search capabilities,thus preventing entrapment in local minima and enhancing clustering performance.Experiments conducted on 300 datasets,comprising both real and simulated data.The results show that the average accuracy(ACC)of the proposed algorithm is 0.86 and the combination measure(CM)is 0.81. 展开更多
关键词 hyperspectral fuzzy clustering tissue P system band selection interpretable
在线阅读 下载PDF
Hyperspectral remote sensing identification of marine oil emulsions based on the fusion of spatial and spectral features
20
作者 Xinyue Huang Yi Ma +1 位作者 Zongchen Jiang Junfang Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期139-154,共16页
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio... Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection. 展开更多
关键词 oil emulsions IDENTIFICATION hyperspectral remote sensing feature selection convolutional neural network(CNN) spatial-temporal transferability
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部