期刊文献+
共找到355篇文章
< 1 2 18 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:1
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Segmented predictor-corrector reentry guidance based on an analytical profile 被引量:1
2
作者 Hui XU Guangbin CAI +2 位作者 Chaoxu MU Xin LI Hao WEI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第1期50-65,共16页
A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance m... A segmented predictor-corrector method is proposed for hypersonic glide vehicles to address the issue of the slow computational speed of obtaining guidance commands using the traditional predictor-corrector guidance method.Firstly,an altitude-energy profile is designed,and the bank angle is derived analytically as the initial iteration value for the predictor-corrector method.The predictor-corrector guidance method has been improved by deriving an analytical form for predicting the range-to-go error,which greatly accelerates the iterative speed.Then,a segmented guidance algorithm is proposed.The above analytically predictor-corrector guidance method is adopted when the energy exceeds an energy threshold.When the energy is less than the threshold,the equidistant test method is used to calculate the bank angle command,which ensures guidance accuracy as well as computational efficiency.Additionally,an adaptive guidance cycle strategy is applied to reduce the computational time of the reentry guidance trajectory.Finally,the accuracy and robustness of the proposed method are verified through a series of simulations and Monte-Carlo experiments.Compared with the traditional integral method,the proposed method requires 75%less computation time on average and achieves a lower landing error. 展开更多
关键词 Hypersonic glide vehicle(HGV) Segmented reentry guidance method Analytical profile Adaptive guidance cycle Reentry trajectory
原文传递
Receptivity of a hypersonic blunt cone boundary layer to freestream entropy and vorticity waves
3
作者 Menghao Niu Caihong Su 《Acta Mechanica Sinica》 2025年第6期93-104,共12页
Hypersonic boundary-layer receptivity to freestream entropy and vorticity waves is investigated using direct numerical simula-tions for a Mach 6 flow over a 5.08 mm nose radius cone.Two frequencies of 33 kHz and 150 k... Hypersonic boundary-layer receptivity to freestream entropy and vorticity waves is investigated using direct numerical simula-tions for a Mach 6 flow over a 5.08 mm nose radius cone.Two frequencies of 33 kHz and 150 kHz are considered to be rep-resentative of the first and second instability modes,respectively.For the first mode,wall pressure fluctuations for both entropy and vorticity wave cases exhibit a strong modulation yet without a growing trend,indicating that the first mode is not generated despite its instability predicted by linear stability theory.The potential reason for this is the absence of postshock slow acoustic waves capable of synchronizing with the first mode.By contrast,for the second mode,a typical three-stage boundary-layer response is observed,consistent with that to slow acoustic waves studied previously.Furthermore,the postshock disturbances outside the boundary layer can be decomposed into the entropy(density/temperature fluctuations)and vorticity components(ve-locity fluctuations),and the latter is shown to play a leading role in generating the second mode,even for the case with entropy waves where the density/temperature fluctuations dominate the postshock regions. 展开更多
关键词 HYPERSONIC Boundary layer RECEPTIVITY Entropy wave Vorticity wave
原文传递
Adaptive reverse Monte Carlo method and evaluation for infrared radiation characteristics of scramjet
4
作者 Xinyuan LIU Yongqiang SHI +3 位作者 Qingzhen YANG Huicheng YANG Xubo DU Xufei WANG 《Chinese Journal of Aeronautics》 2025年第8期187-203,共17页
Scramjet is the most promising propulsion system for Air-breathing Hypersonic Vehicle(AHV),and the Infrared(IR)radiation it emits is critical for early warning,detection,and identification of such weapons.This work pr... Scramjet is the most promising propulsion system for Air-breathing Hypersonic Vehicle(AHV),and the Infrared(IR)radiation it emits is critical for early warning,detection,and identification of such weapons.This work proposes an Adaptive Reverse Monte Carlo(ARMC)method and develops an analytical model for the IR radiation of scramjet considering gaseous kerosene and hydrogen fueled conditions.The evaluation studies show that at a global equivalence ratio of 0.8,the IR radiation from hydrogen-fueled plume is predominantly from H_(2)O and spectral peak is 1.53 kW·Sr^(-1)·μm^(-1)at the 2.7μm band,while the kerosene-fueled plume exhibits a spectral intensity approaching 7.0 kW·Sr^(-1)·μm^(-1)at the 4.3μm band.At the backward detection angle,both types of scramjets exhibit spectral peaks within the 1.3-1.4μm band,with intensities around10 kW·Sr^(-1)·μm^(-1).The integral radiation intensity of hydrogen-fueled scramjet is generally higher than kerosene-fueled scramjet,particularly in 1-3μm band.Meanwhile,at wide detection angles,the solid walls become the predominant radiation source.The radiation intensity is highest in1-3μm and weakest in 8-14μm band,with values of 21.5 kW·Sr^(-1)and 0.57 kW·Sr^(-1)at the backward detection angles,respectively.Significant variations in the radiation contributions from gases and solids are observed across different bands under the two fuel conditions,especially within 3-5μm band.This research provides valuable insights into the IR radiation characteristics of scramjets,which can aid in the development of IR detection systems for AHV. 展开更多
关键词 HYPERSONIC Infrared radiation Monte Carlo methods SCRAMJET Statistical variance
原文传递
Effects of doors on an open cavity flow at Mach number 6
5
作者 Baoping NIE Xilin HU Zhufei LI 《Chinese Journal of Aeronautics》 2025年第2期75-91,共17页
Open cavities with different door-opening angles are investigated using high-speed schlieren visualization and dynamic pressure measurements in hypersonic flow with a freestream Mach number of 6.With the help of numer... Open cavities with different door-opening angles are investigated using high-speed schlieren visualization and dynamic pressure measurements in hypersonic flow with a freestream Mach number of 6.With the help of numerical simulations,the shear layer deformation and pressure increase in the cavities due to the impingement of the door-leading-edge shocks are identified via comparison with those in the cavity without doors.As the door-opening angle decreases from 90°,the shear layer above the forepart of the cavity is gradually raised by the high pressure in the cavity.When the door-opening angle decreases to 30°and 15°,the boundary layer on the upstream flat plate of the cavity separates,and separation shock is observed.The doors enhance the instability of the cavity flow and increase the pressure fluctuations in the cavities.A new oscillation pattern,referred to as coupled oscillation,is observed in the cases with separation on the upstream flat plate,in which the separation shock oscillates at the same dominant frequency as the flow inside the cavity.Compared with the cavity without doors,this coupled oscillation causes a lower oscillation frequency and a larger overall sound pressure level.Cross-correlation analyses between pressure signals indicate that the disturbances generated at the trailing edge of the cavity can propagate to the separation on the upstream flat plate and cause coupled oscillation of the separation shock.The fundamental frequencies of the coupled oscillations can be normalized to approximately the same Strouhal number as that of the cavity without doors.These findings support that the oscillation mechanisms of hypersonic cavities without and with doors are primarily dominated by acoustic feedback. 展开更多
关键词 Hypersonic flow Cavity oscillation Doors Shear-layer deformation Pressure fluctuation Acoustic feedback
原文传递
Application of a high-speed imaging system for characterization of a hypersonic plasma jet
6
作者 Changjun LI Qingqing SHU +2 位作者 Zhiqiang CUI Guangyu LI Yong Chia Francis THIO 《Plasma Science and Technology》 2025年第5期94-102,共9页
Plasma-jet-driven magneto-inertial fusion(PJMIF),achieving uniform high-Z plasma liners via hypersonic plasma jets(Ma>10),requires precise control of jet reproducibility,synchronization,and mass/velocity uniformity... Plasma-jet-driven magneto-inertial fusion(PJMIF),achieving uniform high-Z plasma liners via hypersonic plasma jets(Ma>10),requires precise control of jet reproducibility,synchronization,and mass/velocity uniformity.To address jet nonuniformities in the coaxial plasma gun of the ShanghaiTech Gun1(STG1)facility,a high-speed imaging system utilizing intensified complementary metal oxide semiconductor(ICMOS)cameras(5120×5120 pixels,3 ns exposure)with synchronized triggering(<1μs delay,<50 ps jitter)was developed.The system's 45°×45°field of view(42×42 cm^(2)midplane coverage)and~1 mm spatial resolution enabled nonperturbative monitoring of hypersonic argon plasma jets(v_(jet)~100 km/s).Triaxial imaging(top/side/end-on views)quantified axial deviations and jet structures,while densitometric profiling derived Mach numbers through boundary spread angles.This diagnostic approach resolves critical challenges in PJMIF gun optimization,with future extensions to multi-channel imaging,narrowband spectral filtering,and 3D reconstruction. 展开更多
关键词 PJMIF coaxial plasma gun hypersonic plasma jet high-speed imaging
在线阅读 下载PDF
Advances in the study of high-speed attachment-line boundary layer transition
7
作者 Youcheng Xi Peisen Lu Song Fu 《Acta Mechanica Sinica》 2025年第7期115-137,共23页
This review provides recent advancements in the study of attachment-line boundary layer transition with emphasis on high-speed configurations.As a critical factor influencing aerodynamic performance and thermal manage... This review provides recent advancements in the study of attachment-line boundary layer transition with emphasis on high-speed configurations.As a critical factor influencing aerodynamic performance and thermal management in supersonic and hypersonic systems,the transition mechanisms of three-dimensional attachment-line boundary layers have emerged as a pivotal research frontier in high-speed aerodynamics.This review systematically summarizes the evolution of research on attachment-line boundary layer transition,from early theoretical foundations to modern computational and experimental breakthroughs.A critical examination is presented for two pivotal challenges in high-speed attachment-line boundary layer transition:The resolution of the Gaillard paradox and the leading-edge contamination mechanism.Through systematic synthesis of theoretical developments and empirical evidence,this review identifies critical knowledge gaps while proposing novel methodological approaches for attachment-line boundary layer transition analysis.The review culminates in a strategic framework outlining promising avenues for both fundamental inquiry into attachment-line phenomena and applied engineering solutions in flow control strategies. 展开更多
关键词 Attachment-line Transition Supersonic and hypersonic Boundary layer
原文传递
Variable leading-edge cone method for waverider design
8
作者 Zhihao LI Chongwen JIANG +1 位作者 Shuyao HU Chun-Hian LEE 《Chinese Journal of Aeronautics》 2025年第3期262-279,共18页
The optimization of the waverider is constrained by the reversely designed leading edge and the constant shock angle distribution. This paper proposes a design method called the variable Leading-Edge Cone (vLEC) metho... The optimization of the waverider is constrained by the reversely designed leading edge and the constant shock angle distribution. This paper proposes a design method called the variable Leading-Edge Cone (vLEC) method to address these limitations. In the vLEC method, the waverider is directly designed from the preassigned leading edge and the variable shock angle distribution based on the Leading-Edge Cone (LEC) concept. Since the vLEC method is an approximate method, two test waveriders are designed and evaluated using numerical simulations to validate the shock design accuracy and the effectiveness of the vLEC method. The results show that the shocks of the test waveriders coincide well with the preassigned positions. Furthermore, four specifically designed application cases are conducted to analyze the performance benefits of the vLEC waveriders. The results of these cases indicate that, due to their variable shock angle distributions, the vLEC waveriders exhibit higher lift-to-drag ratios and better longitudinal static stability than conventional waveriders. Additionally, the vLEC waveriders demonstrate superior volumetric capacities near the symmetry plane, albeit with a minor decrease in volumetric efficiency. 展开更多
关键词 Hypersonic vehicles Waverider design methods Leading-edge cone method Variable shock angles Direct design method
原文传递
Aerodynamic configuration of a wide-range reversible vehicle
9
作者 Yuhang SUN Shibin LUO +1 位作者 Jun LIU Jiaqi TIAN 《Chinese Journal of Aeronautics》 2025年第4期257-271,共15页
The design of wide-range high-efficiency aerodynamic configurations is one of the most important key technologies in the research of near-space hypersonic vehicles.A double-sided intake configuration with different in... The design of wide-range high-efficiency aerodynamic configurations is one of the most important key technologies in the research of near-space hypersonic vehicles.A double-sided intake configuration with different inlets on the upper and lower surfaces is proposed to adapt to widerange flight.Firstly,the double-sided intake configuration’s design method and flight profile are delineated.Secondly,Computational Fluid Dynamics(CFD)numerical simulation based on multi-Graphics Processing Unit(GPU)parallel computing is adopted to evaluate the vehicle’s performance comprehensively,aiming to verify the feasibility of the proposed scheme.This evaluation encompasses a wide-range basic aerodynamic characteristics,inlet performance,and heat flux at critical locations.The results show that the inlets of the designed integration configuration can start up across Mach number 3.5 to 8.The vehicle possesses multi-point cruising capability by flipping the fuselage.Simultaneously,a 180°rotation of the fuselage can significantly decrease the heat accumulation on the lower surface of the vehicle,particularly at the inlet lip,further decreasing the temperature gradient across the vehicle structure.This study has some engineering value for the aerodynamic configuration design of wide-range vehicles.However,further study reveals that the flow phenomena at the intersection of two inlets are complex,posing potential adverse impacts on propulsion efficiency.Therefore,it is imperative to conduct additional research to delve into this matter comprehensively. 展开更多
关键词 Hypersonic vehicles AERODYNAMICS Double-sided intake configuration Wide-range reversible vehicle Inlet performance Multi-point cruising
原文传递
Mach reflection and pressure/heating loads on V-shaped blunt leading edges with variable cross-sections and crotches
10
作者 Tao ZHANG Xuhui ZHANG +3 位作者 Luoyu RAO Chongguang SHI Chengxiang ZHU Yancheng YOU 《Chinese Journal of Aeronautics》 2025年第1期271-285,共15页
The primary Mach Reflection(MR)and pressure/heating loads on V-shaped Blunt Leading Edges(VBLEs)with variable elliptic cross-sections and conic crotches are theoretically investigated in this study.The simplified cont... The primary Mach Reflection(MR)and pressure/heating loads on V-shaped Blunt Leading Edges(VBLEs)with variable elliptic cross-sections and conic crotches are theoretically investigated in this study.The simplified continuity method is used to forecast the shock configurations.The theoretical predictions and the numerical simulations for the Mach stem and the triple point as well as the curved shock accord well.Based on the theoretical model,an analysis of the impact of the axial ratio a/b of the cross-sectional shape and the eccentricity e of the crotch sweep path on shock structures is carried out.The shock configurations obtained from the theoretical model enable the derivation of the transition boundaries between the primary MR and the same family Regular Reflection(sRR).It is found that the increase of a/b and e can both facilitate the primary MR to sRR transition.The resulting transition and the corresponding generation of the wall pressure and heat flux are then investigated.The results indicate that higher values of the ratio a/b can significantly reduce the wall pressure and heating loads by inducing the primary MR to sRR transition.Conversely,the increase in the eccentricity e results in increased loads,despite causing the same transition. 展开更多
关键词 AERODYNAMICS Hypersonic flow Shock waves Heat flux V-shaped blunt leading edges
原文传递
Optimal disturbances and growth patterns in hypersonic blunt-wedge flow
11
作者 Yifeng CHEN Tianju MA +2 位作者 Peixu GUO Jiaao HAO Chihyung WEN 《Chinese Journal of Aeronautics》 2025年第7期25-45,共21页
In hypersonic boundary layers,the optimal disturbance is notably caused by normalmode instabilities,such as Mack second mode.However,recent experimental and numerical efforts have demonstrated the dominance of nonmoda... In hypersonic boundary layers,the optimal disturbance is notably caused by normalmode instabilities,such as Mack second mode.However,recent experimental and numerical efforts have demonstrated the dominance of nonmodal growth in hypersonic flows with the presence of moderate nose bluntness.In this study,resolvent analysis and parabolized stability equation analysis are performed to investigate the instabilities over a blunt-tip wedge.Main parameters include Mach number 5.9,unit Reynolds number 91.5×10~6/m,half wedge angle 5°,and nose radii ranging from 2.54 mm to 15.24 mm.Two novel growth patterns of travelling waves are identified to compete,whose nature is the intersection of the energy gain of optimal and sub-optimal disturbances.Pattern A with large spanwise wavelengths has the signature of slow energy amplification over a long distance which concentrates in the entropy layer.By contrast,pattern B with relatively small spanwise wavelengths presents rapid transient growth inside the boundary layer.A systematic study is performed on the growth/attenuation mechanism of disturbance patterns and the effects of wall temperature and nose radius.Wall cooling is found to be an alternative control strategy aimed at nonmodal instabilities.The receptivity to slow acoustic waves is considered when the effect of bluntness is studied.An estimated amplitude response favorably reproduces the reversal-like phenomenon.The lift-up/Orr mechanism analysis provides an explanation of energy growth for nonmodal responses. 展开更多
关键词 Hypersonic flow Boundary layer stability Resolvent analysis Optimal disturbance Blunt body
原文传递
Endo-atmospheric maneuver penetration strategy based on generative adversarial reinforcement learning
12
作者 Yaoluo HUI Xiumin LI +2 位作者 Chen LIANG Junzheng SUN Zheng DU 《Chinese Journal of Aeronautics》 2025年第4期394-407,共14页
An intelligent endo-atmospheric penetration strategy based on generative adversarialreinforcement learning is proposed in this manuscript.Firstly,attack and defense adversarial mod-els are established,and missile mane... An intelligent endo-atmospheric penetration strategy based on generative adversarialreinforcement learning is proposed in this manuscript.Firstly,attack and defense adversarial mod-els are established,and missile maneuver penetration problem is transformed into an optimal con-trol problem,considering penetration,handover position and mid-terminal guidance velocityconstraints.Then,Radau Pseudospectral method is adopted to generate data samples consideringrandom perturbations.Furthermore,Generative Adversarial Imitation Learning Combined withDeep Deterministic Policy Gradient method(GAIL-DDPG)is designed,with internal processreward signals constructed to tackle long-term sparse reward in missile manuver penetration prob-lem.Finally,penetration strategy is trained and verified.Simulation shows that using generativeadversarial reinforcement learning,with sample library to learn expert experience in training earlystage,the proposed method can quickly converge.Also,performance is further optimized with rein-forcement learning exploration strategy in the later stage of training.Simulation shows that the pro-posed method has better engineering application ability compared with traditional reinforcementlearning method. 展开更多
关键词 Hypersonic glide vehicle Endo-atmospheric penetration strategy Deep reinforcement learning GUIDANCE GAIL-DDPG
原文传递
Advances in gas-particle dynamics:insights from high-speed flows
13
作者 Baoguo XIAO Wanzhou ZHANG 《Chinese Journal of Aeronautics》 2025年第6期177-178,共2页
1. Introduction High-speed gas-particle flows are crucial in engineering applications and natural phenomena, such as volcanic eruptions,combustion, and hypersonic flight. These flows involve complex gas-particle inter... 1. Introduction High-speed gas-particle flows are crucial in engineering applications and natural phenomena, such as volcanic eruptions,combustion, and hypersonic flight. These flows involve complex gas-particle interactions, posing significant challenges for simulations and experiments. This research highlight summarizes recent advancements in gas-particle dynamics under compressible conditions, covering key findings, numerical and experimental progress, and future directions. Details can be found in the work of Capecelatro and Wagner (Gas-particle dynamics in high-speed flows. Annual Review of Fluid Mechanics 2024;56:379–403). 展开更多
关键词 high speed gas particle flows engineering applications natural phenomenasuch experiments gas particle interactions compressible conditions volcanic eruptionscombustionand hypersonic flightthese
原文传递
Parameterized evasion strategy for hypersonic glide vehicles against two missiles based on reinforcement learning
14
作者 Zeming HAO Ran ZHANG Huifeng LI 《Chinese Journal of Aeronautics》 2025年第4期450-468,共19页
In practical combat scenarios,Hypersonic Glide Vehicles(HGV)face the challenge of evading Successive Pursuers from the Same Direction while satisfying the Homing Constraint(SPSDHC).To address this problem,this paper p... In practical combat scenarios,Hypersonic Glide Vehicles(HGV)face the challenge of evading Successive Pursuers from the Same Direction while satisfying the Homing Constraint(SPSDHC).To address this problem,this paper proposes a parameterized evasion guidance algorithm based on reinforcement learning.The three-player optimal evasion strategy is firstly analyzed and approximated by parametrization.The switching acceleration command of HGV optimal evasion strategy considering the upper limit of missile acceleration command is analyzed based on the optimal control theory.The terminal miss of HGV in the case of evading two missiles is analyzed,which means that the three-player optimal evasion strategy is a linear combination of two one-toone strategies.Then,a velocity control algorithm is proposed to increase the terminal miss by actively controlling the flight speed of the HGV based on the parametrized evasion strategy.The reinforcement learning method is used to implement the strategy in real time and a reward function is designed by deducing homing strategy for the HGV to approach the target,which ensures that the HGV satisfies the homing constraint.Experimental results demonstrate the feasibility and robustness of the proposed parameterized evasion strategy,which enables the HGV to generate maximum terminal miss and satisfy homing constraint when facing single or double missiles. 展开更多
关键词 Hypersonic glide vehicle Optimal control theory Evasion strategy Three players Reinforcement learning
原文传递
Longitudinal optimal analytical midcourse guidance for cruise-glide integrated hypersonic vehicles
15
作者 Xin Li Guangbin Cai +2 位作者 Hui Xu Jianwen Zhu Chaoxu Mu 《Defence Technology(防务技术)》 2025年第8期288-303,共16页
For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model f... For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model for such vehicles,using aerodynamic load as the control variable,and introduces a framework for solving the guidance laws.This framework unifies the design process of guidance laws for both the glide and cruise phases.By decomposing the longitudinal guidance task into position control and velocity control,and minimizing energy consumption as the objective function,the method provides an analytical solution for velocity control load through the calculation of costate variables.This approach requires only the current state and terminal state parameters to determine the guidance law solution.Furthermore,by transforming path constraints into aerodynamic load constraints and solving backwards to obtain the angle of attack,bank angle,and throttle setting,this method ensures a smooth transition from the glide phase to the cruise phase,guaranteeing the successful completion of the guidance task.Finally,the effectiveness and practicality of the proposed method are validated through case simulations and analysis. 展开更多
关键词 Cruise-glide integrated hypersonic vehicle Optimal guidance Velocity control Costate variable Longitudinal analytical solution
在线阅读 下载PDF
Aerodynamic/control coupling optimization of reentry vehicle under wide speed range
16
作者 Lulu Jiang Chao Dong +1 位作者 Xin Pan Gang Chen 《Acta Mechanica Sinica》 2025年第5期65-78,共14页
The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimizati... The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimization design to meet aerodynamic performance requirements throughout the vehicle’s flight envelope.Additionally,the strong coupling between aerodynamics and control adds complexity,as fluctuations in aerodynamic parameters due to speed variations complicate control system design.To address these challenges,this study proposes an aerodynamic/control coupling optimization design approach.This method,based on aerodynamic optimization principles,incorporates active control technology,treating aerodynamic layout and control system design as primary components during the conceptual design phase.By integrating the design and evaluation of aerodynamics and control,the approach aims to reduce design iterations and enhance overall flight performance.The comprehensive design of the rotary reentry vehicle,using this optimization strategy,effectively balances performance at supersonic and hypersonic speeds.The results show that the integrated design model meets aerodynamic and control performance requirements over a broader range of Mach numbers,preventing performance degradation due to deviations from the design Mach number,and providing a practical solution for high-speed reentry vehicle design. 展开更多
关键词 Aerodynamic/control coupling Surrogate-based optimization High-speed vehicle Wide speed range HYPERSONIC
原文传递
Modeling and analysis of maneuver laws based on higher order multi-resolution dynamic mode decomposition for hypersonic glide vehicles
17
作者 Zichu Liu Yudong Hu +2 位作者 Changsheng Gao Wuxing Jing Xudong Ji 《Defence Technology(防务技术)》 2025年第6期34-47,共14页
The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high... The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability. 展开更多
关键词 Hypersonic glide vehicle Dynamic mode decomposition Higher order koopman assumption Manoeuvre law modeling INTERPRETABILITY
在线阅读 下载PDF
Hypersonic laminar flow over spherically double cone with thermochemical non-equilibrium analysis
18
作者 Fengyuan Zuo Tianchi Zhang +1 位作者 Shuling Hu Shengping Shen 《Acta Mechanica Sinica》 2025年第5期33-48,共16页
During the re-entry of a hypersonic aircraft into the earth’s atmosphere,the surrounding air experiences dissociation,ionization,and other complex chemical phenomena due to extreme temperature by shock wave.To ensure... During the re-entry of a hypersonic aircraft into the earth’s atmosphere,the surrounding air experiences dissociation,ionization,and other complex chemical phenomena due to extreme temperature by shock wave.To ensure thermal safety,the thermochemical non-equilibrium effects resulting from real-gas behavior should be taken into account.In this paper,the characteristics of a double-cone hypersonic laminar flow,including distributions of wall pressure,heat flux,and species dissociation are numerically analyzed with incoming enthalpy of 9.65-21.77 MJ/kg.The thermochemical non-equilibrium flow at different enthalpy and wall temperatures is performed with two-temperature model and Park’s seven chemical reaction model.It is found that the doublecone flow features complex shock-shock interactions to form triple points.The flow topology is further brought out from the analysis of streamlines.At the lowest incoming enthalpy with isothermal wall conditions,two foci points appear.While others highlight only one focal point.As the increment of incoming enthalpy,the heat flux and dissociation of nitrogen and oxygen also increase.An increasing wall temperature leads to a larger separation bubble and a lower value of heat flux and pressure peak,while massive dissociation occurs without obvious ionization under considered cases. 展开更多
关键词 HYPERSONIC Thermochemical non-equilibrium flow Wall temperature effect
原文传递
Hypersonic glide vehicle trajectory prediction based on frequency enhanced channel attention and light sampling-oriented MLP network
19
作者 Yuepeng Cai Xuebin Zhuang 《Defence Technology(防务技术)》 2025年第4期199-212,共14页
Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv... Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well. 展开更多
关键词 Hypersonic glide vehicle Trajectory prediction Frequency enhanced channel attention Light sampling-oriented MLP network
在线阅读 下载PDF
A robust adaptive filtering algorithm for high-maneuvering hypersonic vehicles
20
作者 LIANG Xinru GAO Changsheng +1 位作者 JING Wuxing AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第5期1317-1334,共18页
This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated fl... This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated flight environments.Since the interacting multiple model(IMM)filtering is famous with its ability to cover the movement property of motion models,the problem is formulated as modeling the non-stationary heavy-tailed measurement noise without any prior statistics in the IMM framework.Firstly,without any prior statistics,the Gaussian-inverse Wishart distribution is embedded in the improved Pearson type-VII(PTV)distribution,which can adaptively adjust the parameters to model the non-stationary heavytailed measurement noise.Besides,degree of freedom(DOF)parameters are surrogated by the maximization of evidence lower bound(ELBO)in the variational Bayesian optimization framework instead of fixed value to handle uncertain non-Gaussian degrees.Then,this paper analytically derives fusion forms based on the maximum Versoria fusion criterion instead of the moment matching approach,which can provide a precise approximation for the PTV mixture distribution in the mixing and output steps combined with the weight Kullback-Leibler average theory.Simulation results demonstrate the superiority and robustness of the proposed algorithm in typical HGVs tracking when the measurement noise without priori statistics is non-stationary. 展开更多
关键词 hypersonic vehicle Pearson type-VII(PTV)distribution without priori statistics modeling
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部