期刊文献+
共找到355篇文章
< 1 2 18 >
每页显示 20 50 100
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
1
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
Receptivity of a hypersonic blunt cone boundary layer to freestream entropy and vorticity waves
2
作者 Menghao Niu Caihong Su 《Acta Mechanica Sinica》 2025年第6期93-104,共12页
Hypersonic boundary-layer receptivity to freestream entropy and vorticity waves is investigated using direct numerical simula-tions for a Mach 6 flow over a 5.08 mm nose radius cone.Two frequencies of 33 kHz and 150 k... Hypersonic boundary-layer receptivity to freestream entropy and vorticity waves is investigated using direct numerical simula-tions for a Mach 6 flow over a 5.08 mm nose radius cone.Two frequencies of 33 kHz and 150 kHz are considered to be rep-resentative of the first and second instability modes,respectively.For the first mode,wall pressure fluctuations for both entropy and vorticity wave cases exhibit a strong modulation yet without a growing trend,indicating that the first mode is not generated despite its instability predicted by linear stability theory.The potential reason for this is the absence of postshock slow acoustic waves capable of synchronizing with the first mode.By contrast,for the second mode,a typical three-stage boundary-layer response is observed,consistent with that to slow acoustic waves studied previously.Furthermore,the postshock disturbances outside the boundary layer can be decomposed into the entropy(density/temperature fluctuations)and vorticity components(ve-locity fluctuations),and the latter is shown to play a leading role in generating the second mode,even for the case with entropy waves where the density/temperature fluctuations dominate the postshock regions. 展开更多
关键词 hypersonic Boundary layer RECEPTIVITY Entropy wave Vorticity wave
原文传递
Optimal disturbances and growth patterns in hypersonic blunt-wedge flow
3
作者 Yifeng CHEN Tianju MA +2 位作者 Peixu GUO Jiaao HAO Chihyung WEN 《Chinese Journal of Aeronautics》 2025年第7期25-45,共21页
In hypersonic boundary layers,the optimal disturbance is notably caused by normalmode instabilities,such as Mack second mode.However,recent experimental and numerical efforts have demonstrated the dominance of nonmoda... In hypersonic boundary layers,the optimal disturbance is notably caused by normalmode instabilities,such as Mack second mode.However,recent experimental and numerical efforts have demonstrated the dominance of nonmodal growth in hypersonic flows with the presence of moderate nose bluntness.In this study,resolvent analysis and parabolized stability equation analysis are performed to investigate the instabilities over a blunt-tip wedge.Main parameters include Mach number 5.9,unit Reynolds number 91.5×10~6/m,half wedge angle 5°,and nose radii ranging from 2.54 mm to 15.24 mm.Two novel growth patterns of travelling waves are identified to compete,whose nature is the intersection of the energy gain of optimal and sub-optimal disturbances.Pattern A with large spanwise wavelengths has the signature of slow energy amplification over a long distance which concentrates in the entropy layer.By contrast,pattern B with relatively small spanwise wavelengths presents rapid transient growth inside the boundary layer.A systematic study is performed on the growth/attenuation mechanism of disturbance patterns and the effects of wall temperature and nose radius.Wall cooling is found to be an alternative control strategy aimed at nonmodal instabilities.The receptivity to slow acoustic waves is considered when the effect of bluntness is studied.An estimated amplitude response favorably reproduces the reversal-like phenomenon.The lift-up/Orr mechanism analysis provides an explanation of energy growth for nonmodal responses. 展开更多
关键词 hypersonic flow Boundary layer stability Resolvent analysis Optimal disturbance Blunt body
原文传递
Application of a high-speed imaging system for characterization of a hypersonic plasma jet
4
作者 Changjun LI Qingqing SHU +2 位作者 Zhiqiang CUI Guangyu LI Yong Chia Francis THIO 《Plasma Science and Technology》 2025年第5期94-102,共9页
Plasma-jet-driven magneto-inertial fusion(PJMIF),achieving uniform high-Z plasma liners via hypersonic plasma jets(Ma>10),requires precise control of jet reproducibility,synchronization,and mass/velocity uniformity... Plasma-jet-driven magneto-inertial fusion(PJMIF),achieving uniform high-Z plasma liners via hypersonic plasma jets(Ma>10),requires precise control of jet reproducibility,synchronization,and mass/velocity uniformity.To address jet nonuniformities in the coaxial plasma gun of the ShanghaiTech Gun1(STG1)facility,a high-speed imaging system utilizing intensified complementary metal oxide semiconductor(ICMOS)cameras(5120×5120 pixels,3 ns exposure)with synchronized triggering(<1μs delay,<50 ps jitter)was developed.The system's 45°×45°field of view(42×42 cm^(2)midplane coverage)and~1 mm spatial resolution enabled nonperturbative monitoring of hypersonic argon plasma jets(v_(jet)~100 km/s).Triaxial imaging(top/side/end-on views)quantified axial deviations and jet structures,while densitometric profiling derived Mach numbers through boundary spread angles.This diagnostic approach resolves critical challenges in PJMIF gun optimization,with future extensions to multi-channel imaging,narrowband spectral filtering,and 3D reconstruction. 展开更多
关键词 PJMIF coaxial plasma gun hypersonic plasma jet high-speed imaging
在线阅读 下载PDF
Parameterized evasion strategy for hypersonic glide vehicles against two missiles based on reinforcement learning
5
作者 Zeming HAO Ran ZHANG Huifeng LI 《Chinese Journal of Aeronautics》 2025年第4期450-468,共19页
In practical combat scenarios,Hypersonic Glide Vehicles(HGV)face the challenge of evading Successive Pursuers from the Same Direction while satisfying the Homing Constraint(SPSDHC).To address this problem,this paper p... In practical combat scenarios,Hypersonic Glide Vehicles(HGV)face the challenge of evading Successive Pursuers from the Same Direction while satisfying the Homing Constraint(SPSDHC).To address this problem,this paper proposes a parameterized evasion guidance algorithm based on reinforcement learning.The three-player optimal evasion strategy is firstly analyzed and approximated by parametrization.The switching acceleration command of HGV optimal evasion strategy considering the upper limit of missile acceleration command is analyzed based on the optimal control theory.The terminal miss of HGV in the case of evading two missiles is analyzed,which means that the three-player optimal evasion strategy is a linear combination of two one-toone strategies.Then,a velocity control algorithm is proposed to increase the terminal miss by actively controlling the flight speed of the HGV based on the parametrized evasion strategy.The reinforcement learning method is used to implement the strategy in real time and a reward function is designed by deducing homing strategy for the HGV to approach the target,which ensures that the HGV satisfies the homing constraint.Experimental results demonstrate the feasibility and robustness of the proposed parameterized evasion strategy,which enables the HGV to generate maximum terminal miss and satisfy homing constraint when facing single or double missiles. 展开更多
关键词 hypersonic glide vehicle Optimal control theory Evasion strategy Three players Reinforcement learning
原文传递
Longitudinal optimal analytical midcourse guidance for cruise-glide integrated hypersonic vehicles
6
作者 Xin Li Guangbin Cai +2 位作者 Hui Xu Jianwen Zhu Chaoxu Mu 《Defence Technology(防务技术)》 2025年第8期288-303,共16页
For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model f... For the longitudinal midcourse guidance problem of a cruise-glide integrated hypersonic vehicle(CGHV),an analytical method based on optimal control theory is proposed.This method constructs a guidance dynamics model for such vehicles,using aerodynamic load as the control variable,and introduces a framework for solving the guidance laws.This framework unifies the design process of guidance laws for both the glide and cruise phases.By decomposing the longitudinal guidance task into position control and velocity control,and minimizing energy consumption as the objective function,the method provides an analytical solution for velocity control load through the calculation of costate variables.This approach requires only the current state and terminal state parameters to determine the guidance law solution.Furthermore,by transforming path constraints into aerodynamic load constraints and solving backwards to obtain the angle of attack,bank angle,and throttle setting,this method ensures a smooth transition from the glide phase to the cruise phase,guaranteeing the successful completion of the guidance task.Finally,the effectiveness and practicality of the proposed method are validated through case simulations and analysis. 展开更多
关键词 Cruise-glide integrated hypersonic vehicle Optimal guidance Velocity control Costate variable Longitudinal analytical solution
在线阅读 下载PDF
Modeling and analysis of maneuver laws based on higher order multi-resolution dynamic mode decomposition for hypersonic glide vehicles
7
作者 Zichu Liu Yudong Hu +2 位作者 Changsheng Gao Wuxing Jing Xudong Ji 《Defence Technology(防务技术)》 2025年第6期34-47,共14页
The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high... The precise characterization of hypersonic glide vehicle(HGV) maneuver laws in complex flight scenarios still faces challenges. Non-stationary changes in flight state due to abrupt changes in maneuver modes place high demands on the accuracy of modeling methods. To address this issue, a novel maneuver laws modeling and analysis method based on higher order multi-resolution dynamic mode decomposition(HMDMD) is proposed in this work. A joint time-space-frequency decomposition of the vehicle's state sequence in the complex flight scenario is achieved with the higher order Koopman assumption and standard multi-resolution dynamic mode decomposition, and an approximate dynamic model is established. The maneuver laws can be reconstructed and analyzed with extracted multi-scale spatiotemporal modes with clear physical meaning. Based on the dynamic model of HGV, two flight scenarios are established with constant angle of attack and complex maneuver laws, respectively. Simulation results demonstrate that the maneuver laws obtained using the HMDMD method are highly consistent with those derived from the real dynamic model, the modeling accuracy is better than other common modeling methods, and the method has strong interpretability. 展开更多
关键词 hypersonic glide vehicle Dynamic mode decomposition Higher order koopman assumption Manoeuvre law modeling INTERPRETABILITY
在线阅读 下载PDF
Hypersonic glide vehicle trajectory prediction based on frequency enhanced channel attention and light sampling-oriented MLP network
8
作者 Yuepeng Cai Xuebin Zhuang 《Defence Technology(防务技术)》 2025年第4期199-212,共14页
Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effectiv... Hypersonic Glide Vehicles(HGVs)are advanced aircraft that can achieve extremely high speeds(generally over 5 Mach)and maneuverability within the Earth's atmosphere.HGV trajectory prediction is crucial for effective defense planning and interception strategies.In recent years,HGV trajectory prediction methods based on deep learning have the great potential to significantly enhance prediction accuracy and efficiency.However,it's still challenging to strike a balance between improving prediction performance and reducing computation costs of the deep learning trajectory prediction models.To solve this problem,we propose a new deep learning framework(FECA-LSMN)for efficient HGV trajectory prediction.The model first uses a Frequency Enhanced Channel Attention(FECA)module to facilitate the fusion of different HGV trajectory features,and then subsequently employs a Light Sampling-oriented Multi-Layer Perceptron Network(LSMN)based on simple MLP-based structures to extract long/shortterm HGV trajectory features for accurate trajectory prediction.Also,we employ a new data normalization method called reversible instance normalization(RevIN)to enhance the prediction accuracy and training stability of the network.Compared to other popular trajectory prediction models based on LSTM,GRU and Transformer,our FECA-LSMN model achieves leading or comparable performance in terms of RMSE,MAE and MAPE metrics while demonstrating notably faster computation time.The ablation experiments show that the incorporation of the FECA module significantly improves the prediction performance of the network.The RevIN data normalization technique outperforms traditional min-max normalization as well. 展开更多
关键词 hypersonic glide vehicle Trajectory prediction Frequency enhanced channel attention Light sampling-oriented MLP network
在线阅读 下载PDF
A robust adaptive filtering algorithm for high-maneuvering hypersonic vehicles
9
作者 LIANG Xinru GAO Changsheng +1 位作者 JING Wuxing AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第5期1317-1334,共18页
This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated fl... This paper concentrates on addressing the hypersonic glide vehicle(HGV)tracking problem considering the high maneuverability and non-stationary heavy-tailed measurement noise without prior statistics in complicated flight environments.Since the interacting multiple model(IMM)filtering is famous with its ability to cover the movement property of motion models,the problem is formulated as modeling the non-stationary heavy-tailed measurement noise without any prior statistics in the IMM framework.Firstly,without any prior statistics,the Gaussian-inverse Wishart distribution is embedded in the improved Pearson type-VII(PTV)distribution,which can adaptively adjust the parameters to model the non-stationary heavytailed measurement noise.Besides,degree of freedom(DOF)parameters are surrogated by the maximization of evidence lower bound(ELBO)in the variational Bayesian optimization framework instead of fixed value to handle uncertain non-Gaussian degrees.Then,this paper analytically derives fusion forms based on the maximum Versoria fusion criterion instead of the moment matching approach,which can provide a precise approximation for the PTV mixture distribution in the mixing and output steps combined with the weight Kullback-Leibler average theory.Simulation results demonstrate the superiority and robustness of the proposed algorithm in typical HGVs tracking when the measurement noise without priori statistics is non-stationary. 展开更多
关键词 hypersonic vehicle Pearson type-VII(PTV)distribution without priori statistics modeling
在线阅读 下载PDF
Hypersonic laminar flow over spherically double cone with thermochemical non-equilibrium analysis
10
作者 Fengyuan Zuo Tianchi Zhang +1 位作者 Shuling Hu Shengping Shen 《Acta Mechanica Sinica》 2025年第5期33-48,共16页
During the re-entry of a hypersonic aircraft into the earth’s atmosphere,the surrounding air experiences dissociation,ionization,and other complex chemical phenomena due to extreme temperature by shock wave.To ensure... During the re-entry of a hypersonic aircraft into the earth’s atmosphere,the surrounding air experiences dissociation,ionization,and other complex chemical phenomena due to extreme temperature by shock wave.To ensure thermal safety,the thermochemical non-equilibrium effects resulting from real-gas behavior should be taken into account.In this paper,the characteristics of a double-cone hypersonic laminar flow,including distributions of wall pressure,heat flux,and species dissociation are numerically analyzed with incoming enthalpy of 9.65-21.77 MJ/kg.The thermochemical non-equilibrium flow at different enthalpy and wall temperatures is performed with two-temperature model and Park’s seven chemical reaction model.It is found that the doublecone flow features complex shock-shock interactions to form triple points.The flow topology is further brought out from the analysis of streamlines.At the lowest incoming enthalpy with isothermal wall conditions,two foci points appear.While others highlight only one focal point.As the increment of incoming enthalpy,the heat flux and dissociation of nitrogen and oxygen also increase.An increasing wall temperature leads to a larger separation bubble and a lower value of heat flux and pressure peak,while massive dissociation occurs without obvious ionization under considered cases. 展开更多
关键词 hypersonic Thermochemical non-equilibrium flow Wall temperature effect
原文传递
Cooperative game penetration guidance for multiple hypersonic vehicles under safety critical framework 被引量:5
11
作者 Jieqing CHEN Ruisheng SUN Yu LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期247-255,共9页
The rapid development of the anti-missile weapon technology brings new challenges to the cooperative penetration strategy solution and the guidance law design for Hypersonic Vehicles(HVs).This paper studies the coordi... The rapid development of the anti-missile weapon technology brings new challenges to the cooperative penetration strategy solution and the guidance law design for Hypersonic Vehicles(HVs).This paper studies the coordinated game penetration guidance problem for multiple hypersonic vehicles faced with space threat areas.A scheme for seeking cooperative game penetration guidance strategy under safety critical control framework is presented.In this scheme,a multiHV cooperative game model is proposed in a minimum optimization form which can simplify the solving process and accelerate the computing speed.Then,a second-order control barrier function is developed to transform the implicit nonlinear constraints of the proposed model into linear ones.In order to obtain better performance of guidance strategy,a composite guidance law under the safety critical control framework is presented to allocate guidance strategies appropriately in the whole process.It is shown that the proposed scheme can guarantee successful penetration while avoiding threat areas.Finally,a comparative simulation with a two-on-three game is conducted to verify the effectiveness of the proposed method. 展开更多
关键词 hypersonic vehicles Safety critical control Penetration game Space constraints Cooperative guidance
原文传递
Adaptive fault-tolerant control for non-minimum phase hypersonic vehicles based on adaptive dynamic programming 被引量:4
12
作者 Le WANG Ruiyun QI Bin JIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期290-311,共22页
In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on t... In this paper,a novel adaptive Fault-Tolerant Control(FTC)strategy is proposed for non-minimum phase Hypersonic Vehicles(HSVs)that are affected by actuator faults and parameter uncertainties.The strategy is based on the output redefinition method and Adaptive Dynamic Programming(ADP).The intelligent FTC scheme consists of two main parts:a basic fault-tolerant and stable controller and an ADP-based supplementary controller.In the basic FTC part,an output redefinition approach is designed to make zero-dynamics stable with respect to the new output.Then,Ideal Internal Dynamic(IID)is obtained using an optimal bounded inversion approach,and a tracking controller is designed for the new output to realize output tracking of the nonminimum phase HSV system.For the ADP-based compensation control part,an ActionDependent Heuristic Dynamic Programming(ADHDP)adopting an actor-critic learning structure is utilized to further optimize the tracking performance of the HSV control system.Finally,simulation results are provided to verify the effectiveness and efficiency of the proposed FTC algorithm. 展开更多
关键词 hypersonic vehicle Fault-tolerant control Non-minimum phase system Adaptive control Nonlinear control Adaptive dynamic programming
原文传递
Infrared radiation characteristics of dagger-type hypersonic missile 被引量:3
13
作者 Xubo DU Qingzhen YANG +2 位作者 Haoqi YANG Jin BAI Yongqiang SHI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期137-150,共14页
Hypersonic vehicles emit strong infrared radiation from their high-temperature exhaust plume and body, which is critical for infrared early warning, tracking, and guidance. In this work, a comprehensive analysis is co... Hypersonic vehicles emit strong infrared radiation from their high-temperature exhaust plume and body, which is critical for infrared early warning, tracking, and guidance. In this work, a comprehensive analysis is conducted on the factors involved in air dissociation reaction within the shock layer of hypersonic missile heads, as well as the multi-component afterburning effect of the exhaust plume. A novel Reverse Monte Carlo Method(RMCM) is proposed for infrared radiation calculation, which utilizes two-dimensional Low-Discrepancy Sequences(LDS) to improve computational accuracy. The numerical calculations for a dagger-type missile show that afterburning reactions increase the temperature on the centerline of the outlet exhaust plume by about 1000 K. The total infrared radiation intensity of the missile is the highest in the 1–3 μm band, with the hightemperature wall of the nozzle being the primary source of solid radiation, and gas radiation primarily coming from H_(2)O. The radiation intensity of the missile exhaust plume in the 3–5 μm band is the highest, with radiation sources primarily coming from CO_(2), CO, and HCl. Afterburning reactions of the exhaust plume increase the total infrared radiation intensity of the missile by about 0.7times. These results can provide reference for the detection and guidance of hypersonic missiles. 展开更多
关键词 hypersonic vehicles Infrared radiation Monte Carlo methods Low-discrepancy sequences Exhaust plume AFTERBURNING
原文传递
Review on heat-to-power conversion technologies for hypersonic vehicles 被引量:3
14
作者 Yinke QI Xiaofeng MA +1 位作者 Peixue JIANG Yinhai ZHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期148-179,共32页
Hypersonic vehicles have enormous military and economic value,while their power and thermal protection demands will increase substantially with the rise in Mach number and duration.Converting the tremendous high-quali... Hypersonic vehicles have enormous military and economic value,while their power and thermal protection demands will increase substantially with the rise in Mach number and duration.Converting the tremendous high-quality heat on the vehicle surface and engine wall into electrical energy through heat-to-power technologies will not only play a role in thermal protection,but also supply power for the vehicle.This paper provides a comprehensive review of heat-to-power conversion technologies on hypersonic vehicles,including the indirect conversion of Brayton and Rankine cycles,direct conversion of thermoelectric materials,and combined conversion.For the open Brayton cycle with hydrocarbon fuel as the working fluid,the Power-to-Weight Ratio(PWR)can achieve the highest,at around 1.8,due to the high PWR of the hydrocarbon fuel turbine and the few components of the system.However,its work capacity is limited by the flow rate of the supplied fuel.The closed Brayton cycle can maintain a relatively high PWR,ranging from 0.2 to 0.8,while achieving relatively high output power and conversion efficiency.The Rankine cycle has a higher PWR,its range is close to that of the closed Brayton cycle,peaking at about 0.88.The thermoelectric materials technology has a small power generation level,making it more suitable for scenarios with low power demand.This review provides a basis for selecting and developing heat-to-power conversion technologies on hypersonic vehicles. 展开更多
关键词 hypersonic vehicles Heat-to-power conversion Brayton cycle Rankine cycle Thermoelectric materials
原文传递
Neural network based adaptive nonsingular practical predefined-time fault-tolerant control for hypersonic morphing aircraft 被引量:3
15
作者 Shihao XU Changzhu WEI +1 位作者 Litao ZHANG Rongjun MU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期421-435,共15页
This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of pr... This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme. 展开更多
关键词 hypersonic morphing aircraft(HMA) Neural network(NN) Adaptive control Practical predefined-time control Fault-tolerant control
原文传递
A novel evasion guidance for hypersonic morphing vehicle via intelligent maneuver strategy 被引量:2
16
作者 Xun LI Xiaogang WANG +1 位作者 Hongyu ZHOU Yu LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期441-461,共21页
This paper presents a novel evasion guidance law for hypersonic morphing vehicles,focusing on determining the optimized wing's unfolded angle to promote maneuverability based on an intelligent algorithm.First,the ... This paper presents a novel evasion guidance law for hypersonic morphing vehicles,focusing on determining the optimized wing's unfolded angle to promote maneuverability based on an intelligent algorithm.First,the pursuit-evasion problem is modeled as a Markov decision process.And the agent's action consists of maneuver overload and the unfolded angle of wings,which is different from the conventional evasion guidance designed for fixed-shape vehicles.The reward function is formulated to ensure that the miss distances satisfy the prescribed bounds while minimizing energy consumption.Then,to maximize the expected cumulative reward,a residual learning method is proposed based on proximal policy optimization,which integrates the optimal evasion for linear cases as the baseline and trains to optimize the performance for nonlinear engagement with multiple pursuers.Therefore,offline training guarantees improvement of the constructed evasion guidance law over conventional ones.Ultimately,the guidance law for online implementation includes only analytical calculations.It maps from the confrontation state to the expected angle of attack and the unfolded angle while retaining high computational efficiency.Simulations show that the proposed evasion guidance law can utilize the change of unfolded angle to extend the maximum overload capability.And it surpasses conventional maneuver strategies by ensuring better evasion efficacy and higher energy efficiency. 展开更多
关键词 hypersonic vehicles Variable-sweep wings Evasion guidance Reinforcement learning Pursuit-evasion problem
原文传递
Multi-scale collaborative design method for macroscopic thermal optimization and mesoscopic woven structure of hypersonic vehicle's TOCMC leading edge 被引量:1
17
作者 Chenwei ZHAO Zecan TU +2 位作者 Junkui MAO Jian HUI Pingting CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期524-541,共18页
A new thermal protection design method for hypersonic vehicle's leading edge is proposed, which can effectively reduce temperature of the leading edge without additional cooling measures. This method reduces the l... A new thermal protection design method for hypersonic vehicle's leading edge is proposed, which can effectively reduce temperature of the leading edge without additional cooling measures. This method reduces the leading-edge's temperature by the multi-scale collaborative design of the macroscopic thermal optimization and the mesoscopic woven structures of Three-dimensional Orthogonal Woven Ceramic Matrix Composites(TOCMC). The macroscopic thermal optimization is achieved by designing different mesoscopic woven structures in different regions to create combined heat transfer channels to dredge the heat. The combined heat transfer channel is macroscopically represented by the anisotropic thermal conductivity of TOCMC. The thermal optimization multiple linear regression model is established to optimize the heat transport channel, which predicts Theoretical Optimal Thermal Conductivity Configuration(TOTCC) in different regions to achieve the lowest leading-edge temperature. The function-oriented mesostructure design method is invented to design the corresponding mesostructure of TOCMC according to the TOTCC, which consists of universal thermal conductivity prediction formulas for TOCMC. These universal formulas are firstly derived based on the thermal resistance network method, which is verified by experiments with an error of 6.25%. The results show that the collaborative design method can effectively reduce the leading edge temperature by about 12.8% without adding cooling measures. 展开更多
关键词 Multi-scale collaborative design Thermal optimization Ceramic matrix composite hypersonic vehicle Thermal protection Intelligent optimization
原文传递
Insights into thermodynamic performance of a hypersonic precooled air-breathing engine with a complicated multi-branch closed cycle 被引量:1
18
作者 Yifan WANG Zhengping ZOU +3 位作者 Pengcheng DU Lichao YAO Huoxing LIU Yusen XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期106-123,共18页
An advanced precooled airbreathing engine with a closed Brayton cycle is a promising solution for high-speed propulsion,of which the Synergetic Air Breathing Rocket Engine(SABRE)is a representative configuration.The p... An advanced precooled airbreathing engine with a closed Brayton cycle is a promising solution for high-speed propulsion,of which the Synergetic Air Breathing Rocket Engine(SABRE)is a representative configuration.The performance of the latest SABRE-4 cycle was analyzed in this paper.Firstly,a relatively complete engine performance model that considers the characteristics of turbomachinery and heat exchangers was developed.Then,Sobol’global sensitivity analysis of key performance parameters was carried out to identify the most influential design variables.Optimal specific impulses under different target specific thrusts were obtained by particle swarm optimization,of which the thermodynamic parameters corresponding to a specific thrust of 1.12 kN·s·kg^(-1)and a specific impulse of 3163 s were chosen as the design values.Four different control laws were analyzed in contrast,and the charge control method had the strongest ability of thrust regulation as well as maintaining a favorable specific impulse performance.Finally,working characteristics under the charge control and over a typical flight envelope were calculated,in which the average value of the maximum specific impulse was as high as 5315 s.This study would help to deepen the understanding of SABRE-4 thermodynamic characteristics and other precooled airbreathing engine cycles with similar layouts. 展开更多
关键词 hypersonic Precooled airbreathing engine Thermodynamic cycle Control law Working characteristics
原文传递
Accurately tracking hypersonic gliding vehicles via an LEO mega-constellation in relay tracking mode 被引量:1
19
作者 LI Zhao WANG Yidi ZHENG Wei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期211-221,共11页
In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the ... In order to effectively defend against the threats of the hypersonic gliding vehicles(HGVs),HGVs should be tracked as early as possible,which is beyond the capability of the ground-based radars.Being benefited by the developing megaconstellations in low-Earth orbit,this paper proposes a relay tracking mode to track HGVs to overcome the above problem.The whole tracking mission is composed of several tracking intervals with the same duration.Within each tracking interval,several appropriate satellites are dispatched to track the HGV.Satellites that are planned to take part in the tracking mission are selected by a new derived observability criterion.The tracking performances of the proposed tracking mode and the other two traditional tracking modes,including the stare and track-rate modes,are compared by simulation.The results show that the relay tracking mode can track the whole trajectory of a HGV,while the stare mode can only provide a very short tracking arc.Moreover,the relay tracking mode achieve higher tracking accuracy with fewer attitude controls than the track-rate mode. 展开更多
关键词 target tracking mega-constellation hypersonic gliding vehicle(HGV) sensor selection observability analysis
在线阅读 下载PDF
Receptivity of Mack modes to localized unsteady blowing and suction in a chemical non-equilibrium hypersonic boundary layer
20
作者 Qingjiang Yuan Runjie Song Ming Dong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第7期1-18,共18页
This paper studies the local receptivity of the Mack-mode instability to localized unsteady blowing and suction(UBS)in a chem-ical non-equilibrium(CNE)hypersonic boundary layer.The five-species CNE model is employed,a... This paper studies the local receptivity of the Mack-mode instability to localized unsteady blowing and suction(UBS)in a chem-ical non-equilibrium(CNE)hypersonic boundary layer.The five-species CNE model is employed,and the receptivity efficiency is formulated by use of the residual theorem.Compared with the results for the calorically perfect gas(CPG)model,we find that the real-gas effect enhances the receptivity efficiency remarkably in the majority of the second-mode frequency band,and the enhancement is mainly attributed to the modification of the base flow due to the CNE effect,which is akin to the cold-wall effect in hypersonic boundary layers.Combined with the destabilizing role of the CNE effect on the Mack second mode,it is concluded that the CNE effect would lead to a greater linearly accumulated perturbation amplitude,implying premature of transition to turbulence in a high-enthalpy hypersonic boundary layer subject to localized perturbations. 展开更多
关键词 Chemical non-equilibrium flow Boundary-layer instability hypersonic RECEPTIVITY Transition to turbulence
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部