期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
基于超图神经网络的多尺度信息传播预测模型
1
作者 赵敬华 张柱 +1 位作者 吕锡婷 林慧丹 《计算机应用》 北大核心 2025年第11期3529-3539,共11页
针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,... 针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,使用超图神经网络(HGNN)提取传播级联图中蕴含的用户全局偏好特征,并融合这2类特征进行微观信息传播预测;其次,利用门控循环单元(GRU)连续预测传播用户,直至虚拟用户;再次,将每次预测所得用户总数作为级联的最终规模,完成宏观信息传播预测;最后,在模型中嵌入强化学习(RL)框架,采用策略梯度方法优化参数,提升宏观信息传播预测性能。在微观信息传播预测方面,相较于次优模型,MIDHGNN在Twitter、Douban、Android数据集上的Hits@k指标分别平均提升12.01%、11.64%、9.74%,mAP@k指标分别平均提升31.31%、14.85%、13.24%;在宏观预测方面,MIDHGNN在这3个数据集上的均方对数误差(MSLE)指标分别最少降低8.10%、12.61%、3.24%,各项指标均显著优于对比模型,验证了它的有效性。 展开更多
关键词 信息传播预测 图卷积网络 超图神经网络 强化学习 多尺度
在线阅读 下载PDF
基于项目级和类别级双混合超图的会话推荐
2
作者 李建伏 张丹 《计算机工程与设计》 北大核心 2025年第6期1758-1765,共8页
为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节... 为捕获项目间和类别间复杂的顺序、高阶依赖关系,提出一种基于项目级和类别级双混合超图融合的会话推荐方法DF-MHCN。分别从项目和类别转换角度构建一个项目级混合超图和一个类别级混合超图;提出混合超图卷积网络更新两个混合超图中节点的表示;引入引导注意力机制融合两种节点表示;用更新后的节点嵌入学习会话表示,计算每个节点的点击概率并推荐概率最大的k个项目。实验结果表明,DF-MHCN方法相对于现有的会话推荐方法具有较高的精度。 展开更多
关键词 基于会话的推荐 混合超图 项目级混合超图 类别级混合超图 超图卷积网络 混合超图卷积网络 引导注意力机制
在线阅读 下载PDF
基于超图卷积和多角度拓扑细化的骨骼行为识别方法
3
作者 黄倩 苏新凯 +1 位作者 李畅 巫义锐 《计算机科学》 北大核心 2025年第5期220-226,共7页
由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空... 由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空间拓扑随时间的动态变化。这些不足影响了模型的表现。为此,利用K-NN计算出相关性高的关节点构成超边,提出了超图构建方法和超边图卷积来动态地学习关节点间的高阶关系。此外,设计了一个从时间和通道角度细化的拓扑图来学习帧级的和通道级的关节点对之间的相关性。最后,开发了一个多角度拓扑细化的超图卷积网络(HyperMTR-GCN)用于骨骼行为识别,其在NTU RGB+D和NTU RGB+D 120数据集上具有显著优势。具体地,所提方法在NTU RGB+D的X-sub基准上比2s-AGCN提高了3.7%,在NTU RGB+D 120的X-sub基准上比2s-AGCN提高了5.7%。 展开更多
关键词 行为识别 图卷积网络 超图神经网络 骨架建模 拓扑细化
在线阅读 下载PDF
对比学习增强的多行为超图神经网络推荐模型
4
作者 王光 李佳欣 《计算机应用研究》 北大核心 2025年第8期2304-2311,共8页
多行为推荐(multi-behavior recommendation,MBR)在互联网平台中愈发重要,但现有方法仍面临两大挑战:a)无法刻画用户不同行为下的复杂兴趣偏好;b)难以建模不同行为间的相互关系。基于此,提出一种对比学习增强的多行为超图神经网络模型(m... 多行为推荐(multi-behavior recommendation,MBR)在互联网平台中愈发重要,但现有方法仍面临两大挑战:a)无法刻画用户不同行为下的复杂兴趣偏好;b)难以建模不同行为间的相互关系。基于此,提出一种对比学习增强的多行为超图神经网络模型(multi-behavior hypergraph neural network model enhanced with contrastive lear-ning,MBHCL),在建模用户复杂多类型交互的同时,结合对比学习捕获行为间共性与差异,以获取更优嵌入表示,缓解冷启动与数据稀疏问题。具体地,MBHCL首先构建用户-项目多行为交互超图,以刻画用户对项目不同维度的偏好;其次设计三个对比任务整合单行为表示,通过捕捉行为间的共性与差异获取全面用户兴趣偏好。最终,MBHCL在四个真实场景数据集上进行对比实验。结果表明,在Tmall和BeiBei数据集上,HIT和NDCG指标有至少4.8%的提升,在Kuairand和Yelp数据集上,HIT和NDCG指标至少提升3.6%,并通过消融实验验证了各模块的有效性,同时显著改善了冷启动用户推荐效果。 展开更多
关键词 推荐系统 多行为推荐 图神经网络 超图 对比学习 自监督学习
在线阅读 下载PDF
基于多视角学习的图神经网络群组推荐模型
5
作者 王聪 史艳翠 《计算机应用》 北大核心 2025年第4期1205-1212,共8页
针对现有基于图神经网络(GNN)的群组推荐模型难以充分利用显隐式交互信息的问题,提出一种基于多视角学习的GNN群组推荐(GRGM)模型。先根据群组交互数据构造超图、二分图和超图投影图,并针对各个图结构的特性采用相应的GNN提取图节点特征... 针对现有基于图神经网络(GNN)的群组推荐模型难以充分利用显隐式交互信息的问题,提出一种基于多视角学习的GNN群组推荐(GRGM)模型。先根据群组交互数据构造超图、二分图和超图投影图,并针对各个图结构的特性采用相应的GNN提取图节点特征,从而充分表达用户、群组和项目之间的显隐式关系;再提出一种多视角信息融合策略,以获取最终的群组和项目表示。在Mafengwo、CAMRa2011和Weeplaces数据集上的实验结果表明,相较于基线模型ConsRec,GRGM模型的命中率(HR@5、HR@10)和归一化折损累计增益(NDCG@5、NDCG@10)在Mafengwo数据集上分别提升了3.38%、1.96%和3.67%、3.84%,在CAMRa2011数据集上分别提升了2.87%、1.18%和0.96%、1.62%,在Weeplaces数据集上分别提升了2.41%、1.69%和4.35%、2.60%。可见,GRGM模型相较于对比模型具有更好的推荐性能。 展开更多
关键词 群组推荐 图神经网络 多视角学习 超图 隐式信息
在线阅读 下载PDF
基于多层超图卷积神经网络的故障诊断方法 被引量:1
6
作者 张元东 张先杰 +1 位作者 张若楠 张海峰 《复杂系统与复杂性科学》 北大核心 2025年第1期131-137,共7页
机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法... 机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法,该方法首先利用多种相似性指标构建出具有不同结构的多层超图,然后通过层内超图卷积以及层间图卷积的操作进行特征的提取与融合。在SEU的仿真数据集以及磨煤机组的真实数据集中进行实验,结果表明该方法可以有效地提高故障诊断的精度。 展开更多
关键词 超图神经网络(HGNN) 图卷积网络(GCN) 多层超图 故障诊断
在线阅读 下载PDF
结合多尺度注意力和动态构建的非均匀超图聚类模型 被引量:1
7
作者 朱峰冉 王慧颖 +2 位作者 林晓丽 李全鑫 庞俊 《计算机工程与应用》 北大核心 2025年第2期200-207,共8页
单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via at... 单个较大非均匀超图聚类旨在将非均匀超图包含的节点划分为多个簇,使得同一簇内的节点更相似,而不同簇中的节点更不相似,具有广泛的应用场景。目前,最优的基于超图神经网络的非均匀超图聚类方法CIAH(co-cluster the interactions via attentive hypergraph neural network)虽然较好地学习了非均匀超图的关系信息,但仍存在两点不足:(1)对于局部关系信息的挖掘不足;(2)忽略了隐藏的高阶关系。因此,提出一种基于多尺度注意力和动态超图构建的非均匀超图聚类模型MADC(non-uniform hypergraph clustering combining multi-scale attention and dynamic construction)。一方面,使用多尺度注意力充分学习了超边中节点与节点之间的局部关系信息;另一方面,采用动态构建挖掘隐藏的高阶关系,进一步丰富了超图特征嵌入。真实数据集上的大量实验结果验证了MADC模型在非均匀超图聚类上的聚类准确率(accuracy,ACC)、标准互信息(normalized mutual information,NMI)和调整兰德指数(adjusted Rand index,ARI)均优于CIAH等所有Baseline方法。 展开更多
关键词 非均匀超图 超图聚类 超图神经网络 多尺度注意力
在线阅读 下载PDF
基于跨模态超图优化学习的多模态情感分析
8
作者 蒋昆 赵征鹏 +3 位作者 普园媛 黄健 谷金晶 徐丹 《计算机科学》 北大核心 2025年第7期210-217,共8页
多模态情感分析旨在从文本、音频和视觉等多种模态信息中检测出更准确的情感表达。以往的研究通过图神经网络来捕获跨模态和跨时间的节点情感交互,从而获得高度表达的情感信息。但图神经网络只能实现二元信息交互,这限制了对模态间复杂... 多模态情感分析旨在从文本、音频和视觉等多种模态信息中检测出更准确的情感表达。以往的研究通过图神经网络来捕获跨模态和跨时间的节点情感交互,从而获得高度表达的情感信息。但图神经网络只能实现二元信息交互,这限制了对模态间复杂情感交互信息的利用,多模态数据中更需要挖掘这种潜在的情感交互信息。因此,提出了一种基于跨模态超图神经网络的多模态情感分析框架,利用超图结构可以连接多个节点的特性,充分利用模态内和模态间的复杂情感交互信息,以挖掘数据间更深层次的情感表征。此外,提出了一种超图自适应模块来优化学习原始超图的结构。超图自适应网络通过点边交叉注意力、超边采样和节点采样来发现潜在的隐式连接,并修剪冗余的超边以及无关的事件节点,对超图结构进行更新与优化。相对于初始结构,更新后的超图结构能够更准确、更完整地表述数据间的潜在情感关联性,以达到更好的情感分类效果。最后,在两个公开的CMU-MOSI和CMU-MOSEI数据集上进行了广泛的实验,结果表明所提框架相对于其他先进算法在多个性能指标上提升了1%~6%。 展开更多
关键词 多模态情感分析 超图神经网络 超图优化 自适应网络 点边信息融合
在线阅读 下载PDF
基于超图神经网络的双模态特征融合藏药材植株识别算法 被引量:1
9
作者 陈健福 孙燕 裴九场 《中草药》 北大核心 2025年第4期1310-1317,共8页
目的准确识别藏药材,实现藏药材智能化挖掘及管理。方法提出基于超图的双模态特征融合藏药材植株识别算法HerbiFusionNet模型。首先,利用改进的ResNet152-CA模型提取藏药材图像的空间特征,将基于Transformer架构的BERT模型提取藏药材文... 目的准确识别藏药材,实现藏药材智能化挖掘及管理。方法提出基于超图的双模态特征融合藏药材植株识别算法HerbiFusionNet模型。首先,利用改进的ResNet152-CA模型提取藏药材图像的空间特征,将基于Transformer架构的BERT模型提取藏药材文本的语义特征,实现2种模态特征的互补与融合;其次,计算融合后特征向量的相似性,构建超图网络;最后,通过超图神经网络捕获藏药材植株复杂关联关系,获得藏药材准确的分类。结果相比于单一模态ResNet-152-CA模型,引入融合双模态特征并基于超图神经网络的HerbiFusionNe模型,藏药材识别准确率为96.28%,其准确率增加了4.40%。提出的HerbiFusionNet模型实证了融合图像和文本的双模态特征利用超图结构挖掘藏药材数据内复杂关系的有效性。结论HerbiFusionNet模型提升了藏药材识别的准确率,能有效捕捉藏药材图像与文本之间的高阶关系,展现了超图神经网络在处理藏药植株复杂数据结构中的优势,为后续深入挖掘“症状-方剂-药材”关系及安全使用奠定了标准化基础,推动了藏药研究和应用的发展。 展开更多
关键词 藏药材 超图 双模态特征融合 卷积神经网络 HerbiFusionNet模型
原文传递
基于HGNN和多尺度特征融合的弱监督人群计数方法
10
作者 李智 苗壮壮 杨连报 《现代电子技术》 北大核心 2025年第14期129-136,共8页
人群计数作为一项关键技术,在公共安全、城市规划以及交通管理等多个领域发挥着至关重要的作用。全监督计数方法要求对行人进行精确的点对点标注,这不仅耗费大量的人力资源,而且需要昂贵的物质资源。相比之下,弱监督学习方法仅需要计数... 人群计数作为一项关键技术,在公共安全、城市规划以及交通管理等多个领域发挥着至关重要的作用。全监督计数方法要求对行人进行精确的点对点标注,这不仅耗费大量的人力资源,而且需要昂贵的物质资源。相比之下,弱监督学习方法仅需要计数级别的注释,有效地解决了这一问题。然而,现有弱监督人群计数往往忽略了人群图像内部的密度分布问题,无法达到与全监督人群计数方法相似的计数性能。为了解决该问题,提出一种基于HGNN和多尺度特征融合的弱监督人群计数方法。利用超图挖掘人群区域内在的关联关系,并设计了一个低分辨率的多尺度特征融合模块来聚合多尺度的行人特征。在4个著名的基准人群计数数据集上进行了实验,结果表明,与现有的弱监督方法相比,所提方法的MAE提高了2.2%,RMSE值仅与当下最优方法相差3.9。此外,在昆明5号地铁线的站台视频进行了实际测试,验证了该方法能够实现高准确度的人群数量估计。 展开更多
关键词 人群计数 弱监督学习方法 多尺度特征 超图神经网络 特征映射 Swin Transformer
在线阅读 下载PDF
融合线图的超门控图神经网络的会话推荐系统
11
作者 白杨 梅红岩 +1 位作者 袁凤源 吴帅甫 《计算机工程与设计》 北大核心 2025年第9期2487-2493,共7页
针对现有的会话推荐模型无法捕捉高维度的相关性和信息传播受限问题,提出了一种会话推荐模型,利用线图神经网络结合超门控图神经网络建模复杂关系和多层次语义来获取高维度的信息。超门控图神经网络可以处理复杂的关系和依赖,而结合门... 针对现有的会话推荐模型无法捕捉高维度的相关性和信息传播受限问题,提出了一种会话推荐模型,利用线图神经网络结合超门控图神经网络建模复杂关系和多层次语义来获取高维度的信息。超门控图神经网络可以处理复杂的关系和依赖,而结合门控线图方法,可以处理不同长度的会话序列,适应不同数据类型和场景。这使得模型具有良好的泛化能力,在推荐任务中提供更准确的结果。实验结果表明,该模型在Tmall和Diginetica两个基准数据集上优于现有方法。 展开更多
关键词 会话推荐 图门控机制 超图神经网络 多层次语义关系 注意力机制 门控线图 推荐系统
在线阅读 下载PDF
基于多元实体对齐的视觉-语言多模态预训练
12
作者 李登 武阿明 韩亚洪 《软件学报》 北大核心 2025年第11期5118-5133,共16页
视觉-语言预训练(visual-language pre-training,VLP)旨在通过在大规模图像-文本多模态数据集上进行学习得到强大的多模态表示.多模态特征融合、对齐是多模态模型训练的关键挑战.现有的大多数视觉-语言预训练模型对于多模态特征融合、... 视觉-语言预训练(visual-language pre-training,VLP)旨在通过在大规模图像-文本多模态数据集上进行学习得到强大的多模态表示.多模态特征融合、对齐是多模态模型训练的关键挑战.现有的大多数视觉-语言预训练模型对于多模态特征融合、对齐问题主要方式是将提取的视觉特征和文本特征直接输入至Transformer模型中.通过Transformer模型中的attention模块进行融合,由于attention机制计算的是两两之间的相似度,因而该方法难以实现多元实体间的对齐.鉴于超图神经网络的超边具有连接多个实体、编码高阶实体相关性的特性,进而实现多元实体间关系的建立.提出基于超图神经网络的多元实体对齐的视觉-语言多模态模型预训练方法.该方法在Transformer多模态融合编码器中引入超图神经网络学习模块学习多模态间多元实体的对齐关系以增强预训练模型中多模态融合编码器实体对齐能力.在大规模图像-文本数据集上对所提视觉-语言预训练模型进行预训练并在视觉问答、图文检索、视觉定位以及自然语言视觉推理多个视觉-语言下游任务上进行微调实验,实验结果表明所提方法相比于baseline方法在多个下游任务中性能均有提升,其中在NLVR2任务上相比baseline方法准确率提升1.8%. 展开更多
关键词 视觉-语言预训练 超图神经网络 多元实体对齐 注意力机制 多模态理解
在线阅读 下载PDF
多源特征融合增强的虚假新闻检测方法
13
作者 胡泽 陈志南 杨宏宇 《电子与信息学报》 北大核心 2025年第8期2919-2934,共16页
针对现有虚假新闻检测方法在提取和利用新闻多层次特征及捕获新闻传播高阶结构特征方面的局限性,该文提出一种多源特征融合增强(MSFFE)的虚假新闻检测方法。该方法利用多层次注意力机制,从结构、时序和内容3个维度提取新闻特征:首先,通... 针对现有虚假新闻检测方法在提取和利用新闻多层次特征及捕获新闻传播高阶结构特征方面的局限性,该文提出一种多源特征融合增强(MSFFE)的虚假新闻检测方法。该方法利用多层次注意力机制,从结构、时序和内容3个维度提取新闻特征:首先,通过增强型超图神经网络提取新闻传播的结构特征;其次,利用多尺度时序模块捕获新闻传播的时序特征;最后,采用多头自注意力机制提取新闻内容特征。特别地,该方法设计了一种特征融合门控单元,用于动态调整不同特征维度的权重,从而实现多源异构特征的高效融合。在公开数据集Politifact和Gossipcop上的实验结果显示,该方法的检测性能较UPFD,HGNN,RTRUST(State-of-the-Art)等近年的基线方法有所提升。其中,与最先进的方法相比较,在Politifact数据集上,准确率提升了3.64%,F1分数提升了3.41%;在Gossipcop数据集上,准确率提升了0.55%,F1分数提升了0.56%。这些实验结果表明,该方法能够有效检测虚假新闻,为虚假新闻检测领域提供了新思路和技术支撑。 展开更多
关键词 虚假新闻检测 超图 图神经网络 注意力机制 多特征融合
在线阅读 下载PDF
结合GAT与卷积神经网络的知识超图链接预测
14
作者 庞俊 马志芬 +1 位作者 林晓丽 王蒙湘 《计算机工程与应用》 北大核心 2025年第9期194-201,共8页
知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,... 知识超图(knowledge hypergraph,KHG)是一种超图结构的知识图谱。知识超图链接预测是基于已知的实体和关系来预测缺失的实体或关系,具有重要的意义和价值。然而,现有基于神经网络的知识超图链接预测方法,只关注关系事实局部的语义特征,缺乏对关系事实之间关联特征的表示学习。针对以上问题,提出了一种基于图注意力网络与卷积神经网络的链接预测方法(knowledge prediction based on GAT and convolutional neural network,HPGC)。一方面,采用改进的卷积网络(convolutional neural network,CNN)提取知识超图中节点实体表示的局部特征;另一方面,使用改进的GAT对节点和关系进行注意力建模,捕获节点之间的全局特征关系,并将两者进行融合,从而获取关系事实更全面的邻域结构,丰富超图关系事实的语义表示。此外,针对HPGC的GAT层输出矢量问题,引入多层感知机(multilayer perceptron,MLP)和正则化技术,提高模型训练的泛化能力。真实数据集上的大量实验结果验证了所提出方法的预测性能均优于基线方法。 展开更多
关键词 知识超图 链接预测 卷积神经网络 注意力机制
在线阅读 下载PDF
基于超图注意力学习的金融异常交易检测方法
15
作者 张超 赵军 《曲阜师范大学学报(自然科学版)》 2025年第4期103-109,共7页
针对传统金融异常交易检测方法无法捕获用户高阶交易关系以及对类别不均衡检测任务性能失效问题,该文提出一种基于超图注意力学习的金融异常交易检测模型(FatHAL).首先,使用超图建模用户的交易行为关系,并引入超边卷积捕获用户之间高阶... 针对传统金融异常交易检测方法无法捕获用户高阶交易关系以及对类别不均衡检测任务性能失效问题,该文提出一种基于超图注意力学习的金融异常交易检测模型(FatHAL).首先,使用超图建模用户的交易行为关系,并引入超边卷积捕获用户之间高阶的交易行为模式,有效解决了用户高阶交易信息丢失问题;其次,提出双通道超图注意力表示学习方法,从超边内部和超边外部两个视角学习用户高阶交易行为的精细化特征;最后,提出基于焦点损失的模型优化策略,通过持续调整误分类样本权重解决异常交易检测数据中样本类别不均衡问题.实验结果表明,相比于现有方法,该文模型在类别均衡数据集和非均衡数据集上的平均准确率分别提高了4.16%和9.79%. 展开更多
关键词 金融异常检测 超图神经网络 焦点损失
在线阅读 下载PDF
基于双通道异质超图神经网络的引文推荐方法
16
作者 李瑞红 李晓红 +1 位作者 姚锦 王闪闪 《计算机工程与科学》 北大核心 2025年第2期361-369,共9页
针对现有引文推荐方法侧重于使用图结构建模二元关系,对节点类型和交互关系的多元化及多样性表示不足的问题,提出了基于双通道异质超图神经网络的引文推荐方法。首先,构建异质图,利用卷积神经网络和Transformer分别编码异质图中各个节... 针对现有引文推荐方法侧重于使用图结构建模二元关系,对节点类型和交互关系的多元化及多样性表示不足的问题,提出了基于双通道异质超图神经网络的引文推荐方法。首先,构建异质图,利用卷积神经网络和Transformer分别编码异质图中各个节点的局部和全局语义特征,获得异质图通道上关于目标节点的结构表征。其次,设计多种类型的超边,扩展异构数据信息。再次,使用超图编码节点间的交互,并利用超图神经网络捕获超图中潜在的复杂高阶语义关系,获得超图通道上关于目标节点的语义表征。最后,聚合2个通道上的信息,得到目标节点的最终语义表示,并计算目标论文节点与候选论文节点间的相关性,生成引用文献推荐列表。在DBLP和PubMed数据集上的实验结果表明,所提出的方法能有效提升引文推荐的质量,获得较好的推荐结果。 展开更多
关键词 引文推荐 异质图 超图神经网络 信息融合
在线阅读 下载PDF
基于有向超图自适应卷积的链接预测模型
17
作者 赵文博 马紫彤 杨哲 《计算机应用》 北大核心 2025年第1期15-23,共9页
图神经网络(GNN)为链接预测提供了多样化的解决方案,但由于普通图的结构限制,目前的相关模型在充分利用顶点间的高阶及不对称信息方面存在明显的不足。针对以上问题,提出一种基于有向超图自适应卷积的链接预测模型。首先,使用有向超图... 图神经网络(GNN)为链接预测提供了多样化的解决方案,但由于普通图的结构限制,目前的相关模型在充分利用顶点间的高阶及不对称信息方面存在明显的不足。针对以上问题,提出一种基于有向超图自适应卷积的链接预测模型。首先,使用有向超图结构更充分地表示顶点间的高阶和方向信息,兼具超图和有向图的优势;其次,有向超图自适应卷积采用自适应信息传播方式替代传统有向超图中的定向信息传播方式,从而解决了有向超边尾部顶点不能有效更新嵌入的问题,同时解决多层卷积导致的顶点过度平滑问题。在Citeseer数据集上基于显式顶点特征的实验结果显示,在链接预测任务上,相较于有向超图神经网络(DHNN)模型,所提模型的ROC(Receiver Operating Characteristic)曲线下面积(AUC)指标提升了2.23个百分点,平均精度(AP)提升了1.31个百分点。因此,所提模型可以充分表达顶点间的关系,并有效提高链接预测任务的性能。 展开更多
关键词 图神经网络 有向超图 链接预测 超图卷积 表示学习 自适应卷积
在线阅读 下载PDF
结合动态多阶门控GNN和超图卷积的自监督会话推荐 被引量:1
18
作者 沈学利 赵国阳 《计算机系统应用》 2025年第4期90-103,共14页
针对现有基于图神经网络的会话推荐方法中缺乏对高阶特征的提取和利用以及数据稀疏性的问题,提出一种结合动态多阶门控图神经网络(GGNN)和超图卷积的自监督会话推荐模型(SDMHC-GNN).首先,利用不同的图结构将会话序列建模为3个不同的视图... 针对现有基于图神经网络的会话推荐方法中缺乏对高阶特征的提取和利用以及数据稀疏性的问题,提出一种结合动态多阶门控图神经网络(GGNN)和超图卷积的自监督会话推荐模型(SDMHC-GNN).首先,利用不同的图结构将会话序列建模为3个不同的视图:会话视图、超图视图和关系视图,会话视图使用动态多阶门控图神经网络、稀疏自注意力和稀疏全局注意力机制生成局部顺序会话表示,超图视图使用超图卷积和软注意力机制生成高阶会话表示,关系视图使用图卷积和稀疏交叉注意力机制生成会话关系表示;其次,通过自监督学习对不同的会话表示之间的互特征最大化;最后,通过意向邻居协作模块对当前会话表示进行过滤和增强.在Diginetica和Tmall两个公开数据集上进行多次实验,并与先进基线模型比较,实验结果表明所提出模型的性能优于基线模型,证明了该模型的有效性. 展开更多
关键词 会话推荐 动态多阶门控图神经网络 超图卷积 稀疏交叉注意力机制 自监督学习
在线阅读 下载PDF
Make U-Net Greater: An Easy-to-Embed Approach to Improve Segmentation Performance Using Hypergraph
19
作者 Jing Peng Jingfu Yang +5 位作者 Chaoyang Xia Xiaojie Li Yanfen Guo Ying Fu Xinlai Chen Zhe Cui 《Computer Systems Science & Engineering》 SCIE EI 2022年第7期319-333,共15页
semantics information while maintaining spatial detail con-texts.Long-range context information plays a crucial role in this scenario.How-ever,the traditional convolution kernel only provides the local and small size ... semantics information while maintaining spatial detail con-texts.Long-range context information plays a crucial role in this scenario.How-ever,the traditional convolution kernel only provides the local and small size of the receptivefield.To address the problem,we propose a plug-and-play module aggregating both local and global information(aka LGIA module)to capture the high-order relationship between nodes that are far apart.We incorporate both local and global correlations into hypergraph which is able to capture high-order rela-tionships between nodes via the concept of a hyperedge connecting a subset of nodes.The local correlation considers neighborhood nodes that are spatially adja-cent and similar in the same CNN feature maps of magnetic resonance(MR)image;and the global correlation is searched from a batch of CNN feature maps of MR images in feature space.The influence of these two correlations on seman-tic segmentation is complementary.We validated our LGIA module on various CNN segmentation models with the cardiac MR images dataset.Experimental results demonstrate that our approach outperformed several baseline models. 展开更多
关键词 Convolutional neural network semantic segmentation hypergraph neural network LGIA module
在线阅读 下载PDF
阿尔兹海默病早期识别的超图神经网络框架
20
作者 朱梦圆 董淑颖 +5 位作者 田梦真 陈庆宇 高翠薇 张新平 李文佳 刘广臣 《佳木斯大学学报(自然科学版)》 2025年第8期18-21,34,共5页
针对阿尔茨海默病的早期识别问题,提出了一个基于多模态数据的稀疏超图神经网络模型框架。首先,使用稀疏线性回归模型并以样本为节点分别构建脑区和基因超图;其次,使用多核学习方法构建脑区-基因融合超图;最后,基于融合后的超图构建超... 针对阿尔茨海默病的早期识别问题,提出了一个基于多模态数据的稀疏超图神经网络模型框架。首先,使用稀疏线性回归模型并以样本为节点分别构建脑区和基因超图;其次,使用多核学习方法构建脑区-基因融合超图;最后,基于融合后的超图构建超图神经网络模型,用于多模态数据下阿尔兹海默病及健康对照组的分类。实验结果表明,使用的方法分类准确率达到85.00%,高于传统的图神经网络和图卷积网络,表明该方法在阿尔兹海默病的早期识别中具有优越的分类性能。 展开更多
关键词 阿尔兹海默病 超图神经网络 多模态 早期识别
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部