Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement o...Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments.There exist two issues:1)deep integration of the spatiotempo-ral information and 2)global spatial dependencies for structural properties.To address these issues,we propose a nonlinear spatiotemporal optimization method,which introduces hypergraph convolution networks(HGCN).The method utilizes the higher-order spatial features of the road network captured by HGCN,and dynamically integrates them with the historical data to weigh the influence of spatiotemporal dependencies.On this basis,an extended Kalman filter is used to improve the accuracy of traffic prediction.In this study,a set of experiments were conducted on the real-world dataset in Chengdu,China.The result showed that the proposed method is feasible and accurate by two different time steps.Especially at the 15-minute time step,compared with the second-best method,the proposed method achieved 3.0%,11.7%,and 9.0%improvements in RMSE,MAE,and MAPE,respectively.展开更多
Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relation...Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relationships between hand joints and improve the accuracy of 3D hand pose regression.However,GCNs cannot effectively describe the relationships between non-adjacent hand joints.Recently,hypergraph convolutional networks(HGCNs)have received much attention as they can describe multi-dimensional relationships between nodes through hyperedges;therefore,this paper proposes a framework for 3D hand pose estimation based on HGCN,which can better extract correlated relationships between adjacent and non-adjacent hand joints.To overcome the shortcomings of predefined hypergraph structures,a kind of dynamic hypergraph convolutional network is proposed,in which hyperedges are constructed dynamically based on hand joint feature similarity.To better explore the local semantic relationships between nodes,a kind of semantic dynamic hypergraph convolution is proposed.The proposed method is evaluated on publicly available benchmark datasets.Qualitative and quantitative experimental results both show that the proposed HGCN and improved methods for 3D hand pose estimation are better than GCN,and achieve state-of-the-art performance compared with existing methods.展开更多
文摘Traffic prediction is a necessary function in intelligent transporta-tion systems to alleviate traffic congestion.Graph learning methods mainly focus on the spatiotemporal dimension,but ignore the nonlinear movement of traffic prediction and the high-order relationships among various kinds of road segments.There exist two issues:1)deep integration of the spatiotempo-ral information and 2)global spatial dependencies for structural properties.To address these issues,we propose a nonlinear spatiotemporal optimization method,which introduces hypergraph convolution networks(HGCN).The method utilizes the higher-order spatial features of the road network captured by HGCN,and dynamically integrates them with the historical data to weigh the influence of spatiotemporal dependencies.On this basis,an extended Kalman filter is used to improve the accuracy of traffic prediction.In this study,a set of experiments were conducted on the real-world dataset in Chengdu,China.The result showed that the proposed method is feasible and accurate by two different time steps.Especially at the 15-minute time step,compared with the second-best method,the proposed method achieved 3.0%,11.7%,and 9.0%improvements in RMSE,MAE,and MAPE,respectively.
基金the National Key Research and Development Program of China(No.2021ZD0111902)the National Natural Science Foundation of China(Nos.62172022 and U21B2038)。
文摘Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relationships between hand joints and improve the accuracy of 3D hand pose regression.However,GCNs cannot effectively describe the relationships between non-adjacent hand joints.Recently,hypergraph convolutional networks(HGCNs)have received much attention as they can describe multi-dimensional relationships between nodes through hyperedges;therefore,this paper proposes a framework for 3D hand pose estimation based on HGCN,which can better extract correlated relationships between adjacent and non-adjacent hand joints.To overcome the shortcomings of predefined hypergraph structures,a kind of dynamic hypergraph convolutional network is proposed,in which hyperedges are constructed dynamically based on hand joint feature similarity.To better explore the local semantic relationships between nodes,a kind of semantic dynamic hypergraph convolution is proposed.The proposed method is evaluated on publicly available benchmark datasets.Qualitative and quantitative experimental results both show that the proposed HGCN and improved methods for 3D hand pose estimation are better than GCN,and achieve state-of-the-art performance compared with existing methods.