Hyperfine structures of IC1 in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels ...Hyperfine structures of IC1 in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold IC1 molecules. For example, an electric field of 1000 V/cm can trap IC1 molecules less than 637μK in the lowest hyperfine level.展开更多
Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state are theoretically studied by diagonalizing the effective Hamiltonian matrix.Perturbations of high-J levels up to 4 are taken in...Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state are theoretically studied by diagonalizing the effective Hamiltonian matrix.Perturbations of high-J levels up to 4 are taken into account when studying the hyperfine sub-levels of the J=0 level,and thus,an 80×80 matrix is constructed and solved.Some of the experimentally absent molecular constants are computed using Dalton program.Our results will be helpful in the experimental investigation of manipulation and further cooling of cold IBr molecules.展开更多
For heavy atoms or ions, such as, Rb and Cs et al., relativistic effect must be considered in the calculation. In this paper, the relativistic many-body perturbation theory is used to solve the Dirac equation. And the...For heavy atoms or ions, such as, Rb and Cs et al., relativistic effect must be considered in the calculation. In this paper, the relativistic many-body perturbation theory is used to solve the Dirac equation. And the zeroth-order hyperfine constants are evaluated with Dirac-Fock wave function. The finite basis sets of dirac equation are constructed by B-splines. With the finite basis sets the core polarization and the correlation diagrams are calculated. The hyperfine structure constants of the 5S1/2 and 6S<sub>1/2 states of 85Rb as well as the 6S1/2 and 7S<sub>1/2 states of 133Cs are evaluated.展开更多
The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecu...The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecular total angular momentum excluding nuclear spin,M_J is the projection number of J,I_(1) and I_(2) are the nuclear spins of the iodine and bromine atoms,and M_(1) and M_(2) are the projection numbers of I_(1) and I_(2),respectively.When the two applied electric and magnetic fields are parallel,the perturbations are rare and only one perturbation is observed in a relatively large field regime in our computation range.However,when the two fields are off-parallel,the perturbations increase significantly and some sublevels show the Feshbach-like resonance phenomenon.Therefore,such sublevels transit between weak-field seeking and strong-field seeking repeatedly,which can be utilized to enhance or suppress cold molecular collision and chemical reaction rates.Such behavior of the molecular hyperfine structure in the mixed off-parallel fields may also be utilized to construct an electric-field-assisted anti-Helmholtz magnetic trap for cold molecules and to realize evaporative cooling of cold molecules(sub-mK)into the ultracold regime(μK).展开更多
Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.T...Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.Two-dimensional(2D)organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field;nevertheless,studies on this remain elusive.Here we report on how the surface depletion field affects the structural phase transition,quantum confinement and Stark effect in 2D(BA)2PbI4 perovskite microplates by the thickness-,temperature-and power-dependent photoluminescence(PL)spectroscopy.Power dependent PL studies suggest that high-temperature phase(HTP)and low-temperature phase(LTP)can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates.With the decrease of the microplate thickness,the structural phase transition temperature first gradually decreases and then increases below 25 nm,in striking contrast to the conventional size dependent structural phase transition.Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase,the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs.This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes.Along with the thickness dependent phase transition,the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect.展开更多
A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic f...A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic field intensity and vapor temperature, the group velocity of probe light can be controlled in an appropriate region.展开更多
In this article,taking advantage of the special magnetic shieldings and the optimal coil design of a transportable Rb atomic fountain clock,the intensity distribution in space and the fluctuations with time of the qua...In this article,taking advantage of the special magnetic shieldings and the optimal coil design of a transportable Rb atomic fountain clock,the intensity distribution in space and the fluctuations with time of the quantization magnetic field in the Ramsey region were measured using the atomic magneton-sensitive transition method.In an approximately 310 mm long Ramsey region,a peak-to-peak magnetic field intensity of a 0.74 n T deviation in space and a 0.06 n T fluctuation with time were obtained.These results correspond to a second-order Zeeman frequency shift of approximately(2095.5±5.1)×10^(-17).This is an essential step in advancing the total frequency uncertainty of the fountain clock to the order of 10^(-17).展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11034002)the National Basic Research Program of China(Grant No.2011CB921602)Qing Lan Project,China
文摘Hyperfine structures of IC1 in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold IC1 molecules. For example, an electric field of 1000 V/cm can trap IC1 molecules less than 637μK in the lowest hyperfine level.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004199,U1810129,52076145,and 11904252).
文摘Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state are theoretically studied by diagonalizing the effective Hamiltonian matrix.Perturbations of high-J levels up to 4 are taken into account when studying the hyperfine sub-levels of the J=0 level,and thus,an 80×80 matrix is constructed and solved.Some of the experimentally absent molecular constants are computed using Dalton program.Our results will be helpful in the experimental investigation of manipulation and further cooling of cold IBr molecules.
文摘For heavy atoms or ions, such as, Rb and Cs et al., relativistic effect must be considered in the calculation. In this paper, the relativistic many-body perturbation theory is used to solve the Dirac equation. And the zeroth-order hyperfine constants are evaluated with Dirac-Fock wave function. The finite basis sets of dirac equation are constructed by B-splines. With the finite basis sets the core polarization and the correlation diagrams are calculated. The hyperfine structure constants of the 5S1/2 and 6S<sub>1/2 states of 85Rb as well as the 6S1/2 and 7S<sub>1/2 states of 133Cs are evaluated.
基金Project supported by the National Natural Science Foundation of China (Grant No.12004199)。
文摘The mixed-field effect at the hyperfine level of the rovibronic ground state of the^(127)I^(79)Br(X^(1)Σ,v=0,J=0)molecule is computed on the J-I uncoupled basis of|JM_(J)I_(1)M_(1)I_(2)M_(2)>,where J is the molecular total angular momentum excluding nuclear spin,M_J is the projection number of J,I_(1) and I_(2) are the nuclear spins of the iodine and bromine atoms,and M_(1) and M_(2) are the projection numbers of I_(1) and I_(2),respectively.When the two applied electric and magnetic fields are parallel,the perturbations are rare and only one perturbation is observed in a relatively large field regime in our computation range.However,when the two fields are off-parallel,the perturbations increase significantly and some sublevels show the Feshbach-like resonance phenomenon.Therefore,such sublevels transit between weak-field seeking and strong-field seeking repeatedly,which can be utilized to enhance or suppress cold molecular collision and chemical reaction rates.Such behavior of the molecular hyperfine structure in the mixed off-parallel fields may also be utilized to construct an electric-field-assisted anti-Helmholtz magnetic trap for cold molecules and to realize evaporative cooling of cold molecules(sub-mK)into the ultracold regime(μK).
基金D.H.L.acknowledges support from the National Natural Science Foundation of China(No.61674060)Innovation Fund of WNLO and the Fundamental Research Funds for the Central Universities,HUST(Nos.2017KFYXJJ030,2017KFXKJC003,2017KFXKJC002,and 2018KFYXKJC016)H.M.L.is grateful for support from New Mexico EPSCoR with NSF-1301346.We thank Testing Center of Huazhong University of Science and Technology for the support in inductively coupled plasma etching.
文摘Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.Two-dimensional(2D)organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field;nevertheless,studies on this remain elusive.Here we report on how the surface depletion field affects the structural phase transition,quantum confinement and Stark effect in 2D(BA)2PbI4 perovskite microplates by the thickness-,temperature-and power-dependent photoluminescence(PL)spectroscopy.Power dependent PL studies suggest that high-temperature phase(HTP)and low-temperature phase(LTP)can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates.With the decrease of the microplate thickness,the structural phase transition temperature first gradually decreases and then increases below 25 nm,in striking contrast to the conventional size dependent structural phase transition.Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase,the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs.This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes.Along with the thickness dependent phase transition,the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect.
文摘A novel method to control the group velocity of light propagation in a two-level atomic system without additional optical field is proposed. Numerical result and experimental data shows that by changing the magnetic field intensity and vapor temperature, the group velocity of probe light can be controlled in an appropriate region.
基金supported by the National Natural Science Foundation of China(No.12004401)Ministry of Science and Technology of China(No.2013YQ09094304)。
文摘In this article,taking advantage of the special magnetic shieldings and the optimal coil design of a transportable Rb atomic fountain clock,the intensity distribution in space and the fluctuations with time of the quantization magnetic field in the Ramsey region were measured using the atomic magneton-sensitive transition method.In an approximately 310 mm long Ramsey region,a peak-to-peak magnetic field intensity of a 0.74 n T deviation in space and a 0.06 n T fluctuation with time were obtained.These results correspond to a second-order Zeeman frequency shift of approximately(2095.5±5.1)×10^(-17).This is an essential step in advancing the total frequency uncertainty of the fountain clock to the order of 10^(-17).