期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Clifford Algebra and Hypercomplex Number as well as Their Applications in Physics 被引量:2
1
作者 Yingqiu Gu 《Journal of Applied Mathematics and Physics》 2022年第4期1375-1393,共19页
The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing ... The Clifford algebra is a unification and generalization of real number, complex number, quaternion, and vector algebra, which accurately and faithfully characterizes the intrinsic properties of space-time, providing a unified, standard, elegant, and open language and tools for numerous complicated mathematical and physical theories. So it is worth popularizing in the teaching of undergraduate physics and mathematics. Clifford algebras can be directly generalized to 2<sup>n</sup>-ary associative algebras. In this generalization, the matrix representation of the orthonormal basis of space-time plays an important role. The matrix representation carries more information than the abstract definition, such as determinant and the definition of inverse elements. Without this matrix representation, the discussion of hypercomplex numbers will be difficult. The zero norm set of hypercomplex numbers is a closed set of special geometric meanings, like the light-cone in the realistic space-time, which has no substantial effect on the algebraic calculus. The physical equations expressed in Clifford algebra have a simple formalism, symmetrical structure, standard derivation, complete content. Therefore, we can hope that this magical algebra can complete a new large synthesis of modern science. 展开更多
关键词 QUATERNION hypercomplex number SUPERCOMPLEX Clifford Algebra Geometric Algebra Maxwell Equations Dirac Equation
在线阅读 下载PDF
基于特性分流的多模态对话情绪感知算法
2
作者 任钦泽 袁野 +3 位作者 傅柯婷 付军秀 徐康 刘娜 《计算机应用研究》 北大核心 2025年第6期1641-1647,共7页
在主动健康领域,多模态情绪感知技术对于监测个人健康和提供医疗陪护具有重要意义。然而,当前多模态对话情绪感知技术在融合不同模态信息时面临挑战,尤其是在捕捉模态间的局部关系方面。为此,提出了一种基于特性分流的多模态融合算法ME... 在主动健康领域,多模态情绪感知技术对于监测个人健康和提供医疗陪护具有重要意义。然而,当前多模态对话情绪感知技术在融合不同模态信息时面临挑战,尤其是在捕捉模态间的局部关系方面。为此,提出了一种基于特性分流的多模态融合算法MEPAD。该算法利用图神经网络捕捉对话的全局信息,并引入超复数数系和成对特征融合机制,分别提取多模态数据的同质性与特异性特征。实验结果表明,MEPAD在IEMOCAP和MOSEI数据集上的多模态对话情绪感知任务中显著优于现有方法,证明了其在处理复杂情感数据方面的有效性和潜力。该研究为多模态情绪感知技术在主动健康领域的应用提供了新的思路。 展开更多
关键词 多模态情绪感知 图神经网络 超复数数系 成对特征融合 对话情绪感知
在线阅读 下载PDF
基于超复数系的分形准全息图象生成
3
作者 曹汉强 朱光喜 朱耀庭 《中国图象图形学报(A辑)》 CSCD 1998年第8期637-640,共4页
提出了一种新型分形准全息图象,并采用基于超复数系分形图象的生成方法进行分形准全息图象序列的生成,生成的分形准全息图象在激光防伪等领域有着良好的应用前景。文中还给出了超复数系中分形三维图象生成的快速算法和生成结果。
关键词 准全息图象 超复数系 图象生成 分形几何学
在线阅读 下载PDF
超复数系统中的高维广义M-J集
4
作者 金涛 王兴元 《计算机仿真》 CSCD 北大核心 2013年第6期261-266,315,共7页
研究超复数算法优化问题,由于超复数系统中构造曼德勃罗-茱莉亚集(M-J集)的算法目前还停留在三元数和四元数水平,且仅实现了低维M-J集在2-D和3-D截面上的仿真。为了更深入研究分形结构的特征性质,使用倍增和截去方法建立了任意维的超复... 研究超复数算法优化问题,由于超复数系统中构造曼德勃罗-茱莉亚集(M-J集)的算法目前还停留在三元数和四元数水平,且仅实现了低维M-J集在2-D和3-D截面上的仿真。为了更深入研究分形结构的特征性质,使用倍增和截去方法建立了任意维的超复数系统,讨论了超复数系统中的加法和乘法运算是闭的前提条件,并给出了超复数系统中高维(任意偶数维)广义M-J集的定义及构造算法。通过选取不同参数,实现并绘制了不同维度广义M-J集的2-D截面,对2-D截面的分形结构特征进行分析,结果表明高维广义M-J集在不同水平上的自相似性,并理论证明了2-D截面的对称性。有关对称性的分析将有助于进一步研究超复数动力学。 展开更多
关键词 超复数系统 高维 广义曼德勃罗-茱莉亚集 分形 对称性
在线阅读 下载PDF
数系结构的探索与发展
5
作者 冯进 《常熟理工学院学报》 2007年第4期20-25,共6页
数系是数学中最基本的对象.但最早发展的自然数的基础却迟至19世纪才建立,完整的数系本质结构的认识也经历了一个多世纪.本文从数系结构的探索与发展过程阐述了数学发展的基本特征与规律.
关键词 数系结构 复数 四元数 超复数
在线阅读 下载PDF
First Principles in Fundamental Physics
6
作者 Yingqiu Gu 《Journal of Applied Mathematics and Physics》 2025年第4期1473-1499,共27页
“All is Number”—the universe follows a few profound mathematical rules,and pure thought can grasp reality.This paper explores the first principles of fundamental physics,focusing on the principle of relativity,the ... “All is Number”—the universe follows a few profound mathematical rules,and pure thought can grasp reality.This paper explores the first principles of fundamental physics,focusing on the principle of relativity,the principle of least action,and the principle of regularity.By illustrating the principle of relativity with an example of coordinate transformation,the paper clarifies the nature of spacetime:spacetime exists objectively,whereas coordinate systems are merely mathematical constructs.It also discusses the uniqueness of natural coordinate systems and their roles in both quantum and classical mechanics.Clifford geometric algebra is introduced as a mathematical framework for physical theories,and the principle of least action is analyzed,emphasizing the Lagrangian as an intrinsic characteristic of physical systems,which can be expressed as a linear combination of the system’s energy terms.Through examples from complicated systems,the paper demonstrates the structural characteristics,applications,and limitations of this principle.Furthermore,it examines the fundamental distinction between the finite and the infinite,noting that infinity is merely an analytical variable rather than a number.If a physical equation yields a solution with infinite energy density,the theory must be revised to maintain consistency.These first principles not only constitute the foundation of physics but also unveil profound symmetries and universal patterns in mathematical structures. 展开更多
关键词 First Principle Clifford Algebras hypercomplex numbers Nonlinear Spinors Unified Field Theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部