In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisat...In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisation are illustrated. Furthermore, we apply the sufficient conditions to a class of fractional-order hyperchaotic systems and well achieve impulsive synchronisation of these fractional-order hyperchaotic systems, thereby extending the applicable scope of impulsive synchronisation. Numerical simulations further demonstrate the feasibility and effectiveness of the proposed scheme.展开更多
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchroniz...In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.展开更多
In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and b...In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.展开更多
The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. B...The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. By utilizing an adaptive controller based on the dynamic compensation mechanism, exact knowledge of the systems is not necessarily required, and the synchronous speed is controllable by tuning the controller parameters. Sufficient conditions for the asymptotic stability of the two synchronization schemes are derived. Numerical simulation results demonstrate that the adaptive synchronization scheme with four control inputs and the cascade adaptive synchronization scheme with only one control signal are effective and feasible in chaos synchronization of hyperchaotic systems.展开更多
A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these syst...A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Doctoral Program Foundation of the Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province,China (No. 20082165)
文摘In this paper, an impulsive synchronisation scheme for a class of fractional-order hyperchaotic systems is proposed. The sufficient conditions of a class of integral-order hyperchaotic systems' impulsive synchronisation are illustrated. Furthermore, we apply the sufficient conditions to a class of fractional-order hyperchaotic systems and well achieve impulsive synchronisation of these fractional-order hyperchaotic systems, thereby extending the applicable scope of impulsive synchronisation. Numerical simulations further demonstrate the feasibility and effectiveness of the proposed scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 51073179)the Natural Science Foundation of Chongqing,China (Grant No. CSTC 2010BB2238)+2 种基金the Doctoral Program of Higher Education Foundation of Institutions of China (Grant Nos. 20090191110011 and 20100191120025)the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20100470813 and 20100480043)the Fundamental Research Funds for the Central Universities(Grant Nos. CDJZR11 12 00 03 and CDJZR11 12 88 01)
文摘In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.
基金National Natural Science Foundation of China under Grant No.10735030
文摘In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB210106)
文摘The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. By utilizing an adaptive controller based on the dynamic compensation mechanism, exact knowledge of the systems is not necessarily required, and the synchronous speed is controllable by tuning the controller parameters. Sufficient conditions for the asymptotic stability of the two synchronization schemes are derived. Numerical simulation results demonstrate that the adaptive synchronization scheme with four control inputs and the cascade adaptive synchronization scheme with only one control signal are effective and feasible in chaos synchronization of hyperchaotic systems.
文摘A challenging topic in nonlinear dynamics concerns the study of fractional-order systems without equilibrium points.In particular, no paper has been published to date regarding the presence of hyperchaos in these systems. This paper aims to bridge the gap by introducing a new example of fractional-order hyperchaotic system without equilibrium points. The conducted analysis shows that hyperchaos exists in the proposed system when its order is as low as 3.84. Moreover, an interesting application of hyperchaotic synchronization to the considered fractional-order system is provided.