An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variab...An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variables: the scalar unknown, its gradient and its flux(coefficient times the gradient), simultaneously. We also prove the existence and uniqueness of semi-discrete solution. Finally, we obtain some numerical results to illustrate the efficiency of the method.展开更多
基金Supported by the National Natural Science Fund(11061021)Supported by the Scientific Research Projection of Higher Schools of Inner Mongolia(NJZZ12011, NJ10006)+1 种基金Supported by the Program of Higher-level talents of Inner Mongolia University(125119)Supported by the Scientific Research Projection of Inner Mongolia University of Finance and Economics(KY1101)
文摘An H1-Galerkin expanded mixed finite element method is discussed for a class of second order semi-linear hyperbolic wave equations. By using the mixed formulation, we can get the optimal approximation for three variables: the scalar unknown, its gradient and its flux(coefficient times the gradient), simultaneously. We also prove the existence and uniqueness of semi-discrete solution. Finally, we obtain some numerical results to illustrate the efficiency of the method.