期刊文献+
共找到350,170篇文章
< 1 2 250 >
每页显示 20 50 100
High-resolution Hyper-spectral Image Classification with Parts-based Feature and Morphology Profile in Urban Area 被引量:1
1
作者 HUANG Yuancheng ZHANG Liangpei LI Pingxiang ZHONG Yanfei 《Geo-Spatial Information Science》 2010年第2期111-122,共12页
High-resolution hyper-spectral image (HHR) provides both detailed structural and spectral information for urban study. However, due to the inherent correlation between spectral bands and within-class variability in th... High-resolution hyper-spectral image (HHR) provides both detailed structural and spectral information for urban study. However, due to the inherent correlation between spectral bands and within-class variability in the data, the data processing of HHR is a challenging work. In this paper, based on spectral mixture analysis theory, a new stack of parts description features were extracted, and then incorporated with a stack of morphology based spatial features. Partially supervised constrained energy minimization (CEM) and unsupervised nonnegative matrix factorization (NMF) were used to extract the part-features. The joint features were then integrated by SVM classifier. The advantages of this method are the representation of physical composition of the urban area by the parts-features and the show of multi-scale structure information by morphology profiles. Experiments with an airborne hyper-spectral data flightline over the Washington DC Mall were performed, and the performance of the proposed algorithm was evaluated in comparison with well-known nonparametric weighted feature extraction (NWFE) and feature selection method. The results shown that the proposed features-joint scheme consistently outperforms the traditional methods, and so can provide an effective option for processing HHR data in urban area. 展开更多
关键词 parts-features CEM NMF morphology profiles hyper-spectral image urban classification
原文传递
Spatial-Aware Supervised Learning for Hyper-Spectral Image Classification Comprehensive Assessment
2
作者 SOOMRO Bushra Naz XIAO Liang +1 位作者 SOOMRO Shahzad Hyder MOLAEI Mohsen 《Journal of Donghua University(English Edition)》 EI CAS 2016年第6期954-960,共7页
A comprehensive assessment of the spatial.aware mpervised learning algorithms for hyper.spectral image (HSI) classification was presented. For this purpose, standard support vector machines ( SVMs ), mudttnomial l... A comprehensive assessment of the spatial.aware mpervised learning algorithms for hyper.spectral image (HSI) classification was presented. For this purpose, standard support vector machines ( SVMs ), mudttnomial logistic regression ( MLR ) and sparse representation (SR) based supervised learning algorithm were compared both theoretically and experimentally. Performance of the discussed techniques was evaluated in terms of overall accuracy, average accuracy, kappa statistic coefficients, and sparsity of the solutions. Execution time, the computational burden, and the capability of the methods were investigated by using probabilistie analysis. For validating the accuracy a classical benchmark AVIRIS Indian pines data set was used. Experiments show that integrating spectral.spatial context can further improve the accuracy, reduce the misclassltication error although the cost of computational time will be increased. 展开更多
关键词 learning algorithms hyper-spectral image classification support vector machine(SVM) multinomial logistic regression(MLR) elastic net regression(ELNR) sparse representation(SR) spatial-aware
在线阅读 下载PDF
Enhancing Hyper-Spectral Image Classification with Reinforcement Learning and Advanced Multi-Objective Binary Grey Wolf Optimization
3
作者 Mehrdad Shoeibi Mohammad Mehdi Sharifi Nevisi +3 位作者 Reza Salehi Diego Martín Zahra Halimi Sahba Baniasadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期3469-3493,共25页
Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving ... Hyperspectral(HS)image classification plays a crucial role in numerous areas including remote sensing(RS),agriculture,and the monitoring of the environment.Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification.This process involves selecting the most informative spectral bands,which leads to a reduction in data volume.Focusing on these key bands also enhances the accuracy of classification algorithms,as redundant or irrelevant bands,which can introduce noise and lower model performance,are excluded.In this paper,we propose an approach for HS image classification using deep Q learning(DQL)and a novel multi-objective binary grey wolf optimizer(MOBGWO).We investigate the MOBGWO for optimal band selection to further enhance the accuracy of HS image classification.In the suggested MOBGWO,a new sigmoid function is introduced as a transfer function to modify the wolves’position.The primary objective of this classification is to reduce the number of bands while maximizing classification accuracy.To evaluate the effectiveness of our approach,we conducted experiments on publicly available HS image datasets,including Pavia University,Washington Mall,and Indian Pines datasets.We compared the performance of our proposed method with several state-of-the-art deep learning(DL)and machine learning(ML)algorithms,including long short-term memory(LSTM),deep neural network(DNN),recurrent neural network(RNN),support vector machine(SVM),and random forest(RF).Our experimental results demonstrate that the Hybrid MOBGWO-DQL significantly improves classification accuracy compared to traditional optimization and DL techniques.MOBGWO-DQL shows greater accuracy in classifying most categories in both datasets used.For the Indian Pine dataset,the MOBGWO-DQL architecture achieved a kappa coefficient(KC)of 97.68%and an overall accuracy(OA)of 94.32%.This was accompanied by the lowest root mean square error(RMSE)of 0.94,indicating very precise predictions with minimal error.In the case of the Pavia University dataset,the MOBGWO-DQL model demonstrated outstanding performance with the highest KC of 98.72%and an impressive OA of 96.01%.It also recorded the lowest RMSE at 0.63,reinforcing its accuracy in predictions.The results clearly demonstrate that the proposed MOBGWO-DQL architecture not only reaches a highly accurate model more quickly but also maintains superior performance throughout the training process. 展开更多
关键词 Hyperspectral image classification reinforcement learning multi-objective binary grey wolf optimizer band selection
在线阅读 下载PDF
The recognition of ocean red tide with hyper-spectral-image based on EMD
4
作者 赵文仓 韦洪丽 +1 位作者 时长江 姬光荣 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2008年第2期137-141,共5页
A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East C... A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general pictre data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast. 展开更多
关键词 red tide recognition aerial remote sensing hyper-spectral image empirical mode decomposition (EMD) characteristic parameter
原文传递
Distance-based separability criterion of ROI in classification of farmland hyper-spectral images
5
作者 Tang Jinglei Miao Ronghui +2 位作者 Zhang Zhiyong Xin Jing Wang Dong 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第5期177-185,共9页
The hyper-spectral image contains spectral and spatial information,which increases the ability and precision of objects classification.Despite the classification value of hyper-spectral imaging technology within vario... The hyper-spectral image contains spectral and spatial information,which increases the ability and precision of objects classification.Despite the classification value of hyper-spectral imaging technology within various applications,users often find it difficult to effectively apply in practice because of the effect of light,temperature and wind in outdoor environment.This research presented a new classification model for outdoor farmland objects based on near-infrared(NIR)hyper-spectral images.It involves two steps including region of interest(ROI)acquisition and establishment of classifiers.A distance-based method for quantitative analysis was proposed to optimize the reference pixels in ROI acquisition firstly.Then maximum likelihood(ML)and support vector machine(SVM)were used for farmland objects classification.The performance of the proposed method showed that the total classification accuracy based on the reference pixels was over 97.5%,of which the SVM-M model could reach 99.5%.The research provided an effective method for outdoor farmland image classification. 展开更多
关键词 distance-based separability criterion near-infrared hyper-spectral image ROI farmland image classification
原文传递
Multi-Feature Fragile Image Watermarking Algorithm for Tampering Blind-Detection and Content Self-Recovery
6
作者 Qiuling Wu Hao Li +1 位作者 Mingjian Li Ming Wang 《Computers, Materials & Continua》 2026年第1期759-778,共20页
Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright.However,in practical applications,this technology faces various problems such as severe image dis... Digital watermarking technology plays an important role in detecting malicious tampering and protecting image copyright.However,in practical applications,this technology faces various problems such as severe image distortion,inaccurate localization of the tampered regions,and difficulty in recovering content.Given these shortcomings,a fragile image watermarking algorithm for tampering blind-detection and content self-recovery is proposed.The multi-feature watermarking authentication code(AC)is constructed using texture feature of local binary patterns(LBP),direct coefficient of discrete cosine transform(DCT)and contrast feature of gray level co-occurrence matrix(GLCM)for detecting the tampered region,and the recovery code(RC)is designed according to the average grayscale value of pixels in image blocks for recovering the tampered content.Optimal pixel adjustment process(OPAP)and least significant bit(LSB)algorithms are used to embed the recovery code and authentication code into the image in a staggered manner.When detecting the integrity of the image,the authentication code comparison method and threshold judgment method are used to perform two rounds of tampering detection on the image and blindly recover the tampered content.Experimental results show that this algorithm has good transparency,strong and blind detection,and self-recovery performance against four types of malicious attacks and some conventional signal processing operations.When resisting copy-paste,text addition,cropping and vector quantization under the tampering rate(TR)10%,the average tampering detection rate is up to 94.09%,and the peak signal-to-noise ratio(PSNR)of the watermarked image and the recovered image are both greater than 41.47 and 40.31 dB,which demonstrates its excellent advantages compared with other related algorithms in recent years. 展开更多
关键词 Fragile image watermark tampering blind-detection SELF-RECOVERY multi-feature
在线阅读 下载PDF
Tracing equatorward and poleward boundaries of the magnetospheric cusp from a simulated X-ray image
7
作者 Xue Wang TianRan Sun +4 位作者 C.Philippe Escoubet Andy Read YiHong Guo Steve Sembay Chi Wang 《Earth and Planetary Physics》 2026年第1期144-155,共12页
A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-d... A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image. 展开更多
关键词 SMILE mission X-ray image cusp boundary
在线阅读 下载PDF
M2ATNet: Multi-Scale Multi-Attention Denoising and Feature Fusion Transformer for Low-Light Image Enhancement
8
作者 Zhongliang Wei Jianlong An Chang Su 《Computers, Materials & Continua》 2026年第1期1819-1838,共20页
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach... Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments. 展开更多
关键词 Low-light image enhancement multi-scale multi-attention TRANSFORMER
在线阅读 下载PDF
GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation
9
作者 Yanting Zhang Qiyue Liu +4 位作者 Chuanzhao Tian Xuewen Li Na Yang Feng Zhang Hongyue Zhang 《Computers, Materials & Continua》 2026年第1期2086-2110,共25页
High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes an... High-resolution remote sensing images(HRSIs)are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies.However,their significant scale changes and wealth of spatial details pose challenges for semantic segmentation.While convolutional neural networks(CNNs)excel at capturing local features,they are limited in modeling long-range dependencies.Conversely,transformers utilize multihead self-attention to integrate global context effectively,but this approach often incurs a high computational cost.This paper proposes a global-local multiscale context network(GLMCNet)to extract both global and local multiscale contextual information from HRSIs.A detail-enhanced filtering module(DEFM)is proposed at the end of the encoder to refine the encoder outputs further,thereby enhancing the key details extracted by the encoder and effectively suppressing redundant information.In addition,a global-local multiscale transformer block(GLMTB)is proposed in the decoding stage to enable the modeling of rich multiscale global and local information.We also design a stair fusion mechanism to transmit deep semantic information from deep to shallow layers progressively.Finally,we propose the semantic awareness enhancement module(SAEM),which further enhances the representation of multiscale semantic features through spatial attention and covariance channel attention.Extensive ablation analyses and comparative experiments were conducted to evaluate the performance of the proposed method.Specifically,our method achieved a mean Intersection over Union(mIoU)of 86.89%on the ISPRS Potsdam dataset and 84.34%on the ISPRS Vaihingen dataset,outperforming existing models such as ABCNet and BANet. 展开更多
关键词 Multiscale context attention mechanism remote sensing images semantic segmentation
在线阅读 下载PDF
A New Image Encryption Algorithm Based on Cantor Diagonal Matrix and Chaotic Fractal Matrix
10
作者 Hongyu Zhao Shengsheng Wang 《Computers, Materials & Continua》 2026年第1期636-660,共25页
Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes ... Driven by advancements in mobile internet technology,images have become a crucial data medium.Ensuring the security of image information during transmission has thus emerged as an urgent challenge.This study proposes a novel image encryption algorithm specifically designed for grayscale image security.This research introduces a new Cantor diagonal matrix permutation method.The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix,where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice(CML).The high initial value sensitivity of the CML system makes the permutation method highly sensitive and secure.Additionally,leveraging fractal theory,this study introduces a chaotic fractal matrix and applies this matrix in the diffusion process.This chaotic fractal matrix exhibits selfsimilarity and irregularity.Using the Cantor diagonal matrix and chaotic fractal matrix,this paper introduces a fast image encryption algorithm involving two diffusion steps and one permutation step.Moreover,the algorithm achieves robust security with only a single encryption round,ensuring high operational efficiency.Experimental results show that the proposed algorithm features an expansive key space,robust security,high sensitivity,high efficiency,and superior statistical properties for the ciphered images.Thus,the proposed algorithm not only provides a practical solution for secure image transmission but also bridges fractal theory with image encryption techniques,thereby opening new research avenues in chaotic cryptography and advancing the development of information security technology. 展开更多
关键词 image encryption spatiotemporal chaotic system chaotic fractal matrix cantor diagonal matrix
在线阅读 下载PDF
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
11
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Unveiling the invisible: Polarization-sensitive ferroelectric photomemristors for enhanced image recognition
12
作者 Chenxu Sheng Shuwen Shen +7 位作者 Laigui Hu Xiaofei Yue Shoaib Awan Dacheng Xia Jiao Wang Zhi-Jun Qiu Chunxiao Cong Ran Liu 《Nano Research》 2026年第1期1136-1144,共9页
Photoresponsive memristors(i.e.,photomemristors)have been recently highly regarded to tackle data latency and energy consumption challenges in conventional Von Neumann architecture-based image recognition systems.Howe... Photoresponsive memristors(i.e.,photomemristors)have been recently highly regarded to tackle data latency and energy consumption challenges in conventional Von Neumann architecture-based image recognition systems.However,their efficacy in recognizing low-contrast images is quite limited,and while preprocessing algorithms are usually employed to enhance these images,which naturally introduce delays that hinder real-time recognition in complex conditions.To address this challenge,here we present a selfdriven polarization-sensitive ferroelectric photomemristor inspired by advanced biological systems.The proposed prototype device is engineered to extract image polarization information,enabling real-time and in-situ enhanced image recognition and classification capabilities.By combining the anisotropic optical feature of the two-dimensional material(ReSe_(2))and ferroelectric polarization of singlecrystalline diisopropylammonium bromide(DIPAB)thin film,tunable and self-driven polarized responsiveness with intelligence was achieved.With remarkable optoelectronic synaptic characteristics of the fabricated device,a significant enhancement was demonstrated in recognition probability—averaging an impressive 85.9% for low-contrast scenarios,in contrast to the mere 47.5% exhibited by traditional photomemristors.This holds substantial implications for the detection and recognition of subtle information in diverse scenes such as autonomous driving,medical imaging,and astronomical observation. 展开更多
关键词 rhenium selenide diisopropylammonium bromide polarization-sensitive ferroelectric photomemristor lowcontrast image recognition artificial neural network
原文传递
Multi-Constraint Generative Adversarial Network-Driven Optimization Method for Super-Resolution Reconstruction of Remote Sensing Images
13
作者 Binghong Zhang Jialing Zhou +3 位作者 Xinye Zhou Jia Zhao Jinchun Zhu Guangpeng Fan 《Computers, Materials & Continua》 2026年第1期779-796,共18页
Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods ex... Remote sensing image super-resolution technology is pivotal for enhancing image quality in critical applications including environmental monitoring,urban planning,and disaster assessment.However,traditional methods exhibit deficiencies in detail recovery and noise suppression,particularly when processing complex landscapes(e.g.,forests,farmlands),leading to artifacts and spectral distortions that limit practical utility.To address this,we propose an enhanced Super-Resolution Generative Adversarial Network(SRGAN)framework featuring three key innovations:(1)Replacement of L1/L2 loss with a robust Charbonnier loss to suppress noise while preserving edge details via adaptive gradient balancing;(2)A multi-loss joint optimization strategy dynamically weighting Charbonnier loss(β=0.5),Visual Geometry Group(VGG)perceptual loss(α=1),and adversarial loss(γ=0.1)to synergize pixel-level accuracy and perceptual quality;(3)A multi-scale residual network(MSRN)capturing cross-scale texture features(e.g.,forest canopies,mountain contours).Validated on Sentinel-2(10 m)and SPOT-6/7(2.5 m)datasets covering 904 km2 in Motuo County,Xizang,our method outperforms the SRGAN baseline(SR4RS)with Peak Signal-to-Noise Ratio(PSNR)gains of 0.29 dB and Structural Similarity Index(SSIM)improvements of 3.08%on forest imagery.Visual comparisons confirm enhanced texture continuity despite marginal Learned Perceptual Image Patch Similarity(LPIPS)increases.The method significantly improves noise robustness and edge retention in complex geomorphology,demonstrating 18%faster response in forest fire early warning and providing high-resolution support for agricultural/urban monitoring.Future work will integrate spectral constraints and lightweight architectures. 展开更多
关键词 Charbonnier loss function deep learning generative adversarial network perceptual loss remote sensing image super-resolution
在线阅读 下载PDF
Future directions of image-guided thermal ablation in colorectal cancer lung oligometastases
14
作者 Yu-Yin Wang Cui-Ping Zhang +3 位作者 Qing-Biao Zhang Xing-Yan Le Jun-Bang Feng Chuan-Ming Li 《World Journal of Gastroenterology》 2026年第2期162-166,共5页
Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by ... Colorectal cancer(CRC)with lung oligometastases,particularly in the presence of extrapulmonary disease,poses considerable therapeutic challenges in clinical practice.We have carefully studied the multicenter study by Hu et al,which evaluated the survival outcomes of patients with metastatic CRC who received image-guided thermal ablation(IGTA).These findings provide valuable clinical evidence supporting IGTA as a feasible,minimally invasive approach and underscore the prognostic significance of metastatic distribution.However,the study by Hu et al has several limitations,including that not all pulmonary lesions were pathologically confirmed,postoperative follow-up mainly relied on dynamic contrast-enhanced computed tomography,no comparative analysis was performed with other local treatments,and the impact of other imaging features on efficacy and prognosis was not evaluated.Future studies should include complete pathological confirmation,integrate functional imaging and radiomics,and use prospective multicenter collaboration to optimize patient selection standards for IGTA treatment,strengthen its clinical evidence base,and ultimately promote individualized decision-making for patients with metastatic CRC. 展开更多
关键词 Colorectal cancer Lung oligometastases Extrapulmonary metastases imageguided thermal ablation Dynamic contrast-enhanced computed tomography Functional imaging
暂未订购
A Hybrid Deep Learning Multi-Class Classification Model for Alzheimer’s Disease Using Enhanced MRI Images
15
作者 Ghadah Naif Alwakid 《Computers, Materials & Continua》 2026年第1期797-821,共25页
Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often stru... Alzheimer’s Disease(AD)is a progressive neurodegenerative disorder that significantly affects cognitive function,making early and accurate diagnosis essential.Traditional Deep Learning(DL)-based approaches often struggle with low-contrast MRI images,class imbalance,and suboptimal feature extraction.This paper develops a Hybrid DL system that unites MobileNetV2 with adaptive classification methods to boost Alzheimer’s diagnosis by processing MRI scans.Image enhancement is done using Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Enhanced Super-Resolution Generative Adversarial Networks(ESRGAN).A classification robustness enhancement system integrates class weighting techniques and a Matthews Correlation Coefficient(MCC)-based evaluation method into the design.The trained and validated model gives a 98.88%accuracy rate and 0.9614 MCC score.We also performed a 10-fold cross-validation experiment with an average accuracy of 96.52%(±1.51),a loss of 0.1671,and an MCC score of 0.9429 across folds.The proposed framework outperforms the state-of-the-art models with a 98%weighted F1-score while decreasing misdiagnosis results for every AD stage.The model demonstrates apparent separation abilities between AD progression stages according to the results of the confusion matrix analysis.These results validate the effectiveness of hybrid DL models with adaptive preprocessing for early and reliable Alzheimer’s diagnosis,contributing to improved computer-aided diagnosis(CAD)systems in clinical practice. 展开更多
关键词 Alzheimer’s disease deep learning MRI images MobileNetV2 contrast-limited adaptive histogram equalization(CLAHE) enhanced super-resolution generative adversarial networks(ESRGAN) multi-class classification
在线阅读 下载PDF
基于手机拍照结合Image J软件对干辣椒外观品质的分级研究 被引量:1
16
作者 胡晋伟 赵志峰 +4 位作者 张欣莹 祝贺 李波 孙海清 徐炜桢 《食品与发酵工业》 CAS 北大核心 2025年第1期273-279,共7页
干辣椒外观形状和色泽是其品质分类的重要指标。目前GB 10465—1989《辣椒干》中对干辣椒外观形状和色泽的检测方式还停留在人工检测阶段,通常受到主观感知、误差、视觉生理等多种因素影响,未形成科学标准化的检测方法。该研究利用手机... 干辣椒外观形状和色泽是其品质分类的重要指标。目前GB 10465—1989《辣椒干》中对干辣椒外观形状和色泽的检测方式还停留在人工检测阶段,通常受到主观感知、误差、视觉生理等多种因素影响,未形成科学标准化的检测方法。该研究利用手机拍照对干辣椒获取图像,通过Image J软件进行图像处理,提出了一种便捷、快速、准确的干辣椒外观形状相关特征量的测定方法。与游标卡尺法、剪纸法等人工测量相比,该方法更方便快速,可用于干辣椒的长度、宽度、面积等表型指标的测量。同时,通过构建红绿蓝(RGB)色彩模型获得干辣椒的外观颜色特征参数,色泽分选采用R/(G+B)比率为分级依据,结合干辣椒宽长比和面积可以将干辣椒分为优质、合格、不合格3个等级。 展开更多
关键词 干辣椒 手机拍照 image J软件 RGB色彩模型 分级
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:2
17
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) image analysis image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
BiCLIP-nnFormer:A Virtual Multimodal Instrument for Efficient and Accurate Medical Image Segmentation 被引量:1
18
作者 Wang Bo Yue Yan +5 位作者 Mengyuan Xu Yuqun Yang Xu Tang Kechen Shu Jingyang Ai Zheng You 《Instrumentation》 2025年第2期1-13,共13页
Image segmentation is attracting increasing attention in the field of medical image analysis.Since widespread utilization across various medical applications,ensuring and improving segmentation accuracy has become a c... Image segmentation is attracting increasing attention in the field of medical image analysis.Since widespread utilization across various medical applications,ensuring and improving segmentation accuracy has become a crucial topic of research.With advances in deep learning,researchers have developed numerous methods that combine Transformers and convolutional neural networks(CNNs)to create highly accurate models for medical image segmentation.However,efforts to further enhance accuracy by developing larger and more complex models or training with more extensive datasets,significantly increase computational resource consumption.To address this problem,we propose BiCLIP-nnFormer(the prefix"Bi"refers to the use of two distinct CLIP models),a virtual multimodal instrument that leverages CLIP models to enhance the segmentation performance of a medical segmentation model nnFormer.Since two CLIP models(PMC-CLIP and CoCa-CLIP)are pre-trained on large datasets,they do not require additional training,thus conserving computation resources.These models are used offline to extract image and text embeddings from medical images.These embeddings are then processed by the proposed 3D CLIP adapter,which adapts the CLIP knowledge for segmentation tasks by fine-tuning.Finally,the adapted embeddings are fused with feature maps extracted from the nnFormer encoder for generating predicted masks.This process enriches the representation capabilities of the feature maps by integrating global multimodal information,leading to more precise segmentation predictions.We demonstrate the superiority of BiCLIP-nnFormer and the effectiveness of using CLIP models to enhance nnFormer through experiments on two public datasets,namely the Synapse multi-organ segmentation dataset(Synapse)and the Automatic Cardiac Diagnosis Challenge dataset(ACDC),as well as a self-annotated lung multi-category segmentation dataset(LMCS). 展开更多
关键词 medical image analysis image segmentation CLIP feature fusion deep learning
原文传递
Anomaly monitoring and early warning of electric moped charging device with infrared image 被引量:1
19
作者 LI Jiamin HAN Bo JIANG Mingshun 《Optoelectronics Letters》 2025年第3期136-141,共6页
Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time perfor... Potential high-temperature risks exist in heat-prone components of electric moped charging devices,such as sockets,interfaces,and controllers.Traditional detection methods have limitations in terms of real-time performance and monitoring scope.To address this,a temperature detection method based on infrared image processing has been proposed:utilizing the median filtering algorithm to denoise the original infrared image,then applying an image segmentation algorithm to divide the image. 展开更多
关键词 detection methods divide image anomaly monitoring temperature detection median filtering algorithm infrared image processing image segmentation algorithm electric moped charging devicessuch
原文传递
EILnet: An intelligent model for the segmentation of multiple fracture types in karst carbonate reservoirs using electrical image logs 被引量:1
20
作者 Zhuolin Li Guoyin Zhang +4 位作者 Xiangbo Zhang Xin Zhang Yuchen Long Yanan Sun Chengyan Lin 《Natural Gas Industry B》 2025年第2期158-173,共16页
Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventi... Karst fractures serve as crucial seepage channels and storage spaces for carbonate natural gas reservoirs,and electrical image logs are vital data for visualizing and characterizing such fractures.However,the conventional approach of identifying fractures using electrical image logs predominantly relies on manual processes that are not only time-consuming but also highly subjective.In addition,the heterogeneity and strong dissolution tendency of karst carbonate reservoirs lead to complexity and variety in fracture geometry,which makes it difficult to accurately identify fractures.In this paper,the electrical image logs network(EILnet)da deep-learning-based intelligent semantic segmentation model with a selective attention mechanism and selective feature fusion moduledwas created to enable the intelligent identification and segmentation of different types of fractures through electrical logging images.Data from electrical image logs representing structural and induced fractures were first selected using the sliding window technique before image inpainting and data augmentation were implemented for these images to improve the generalizability of the model.Various image-processing tools,including the bilateral filter,Laplace operator,and Gaussian low-pass filter,were also applied to the electrical logging images to generate a multi-attribute dataset to help the model learn the semantic features of the fractures.The results demonstrated that the EILnet model outperforms mainstream deep-learning semantic segmentation models,such as Fully Convolutional Networks(FCN-8s),U-Net,and SegNet,for both the single-channel dataset and the multi-attribute dataset.The EILnet provided significant advantages for the single-channel dataset,and its mean intersection over union(MIoU)and pixel accuracy(PA)were 81.32%and 89.37%,respectively.In the case of the multi-attribute dataset,the identification capability of all models improved to varying degrees,with the EILnet achieving the highest MIoU and PA of 83.43%and 91.11%,respectively.Further,applying the EILnet model to various blind wells demonstrated its ability to provide reliable fracture identification,thereby indicating its promising potential applications. 展开更多
关键词 Karst fracture identification Deep learning Semantic segmentation Electrical image logs image processing
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部