Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for wa...Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for ways to reduce their drilling costs and be as efficient as possible. A system called the Drilling Comprehensive Information Management and Application System (DCIMAS) is developed and presented here, with an aim at collecting, storing and making full use of the valuable well data and information relating to all drilling activities and operations. The DCIMAS comprises three main parts, including a data collection and transmission system, a data warehouse (DW) management system, and an integrated platform of core applications. With the support of the application platform, the DW management system is introduced, whereby the operation data are captured at well sites and transmitted electronically to a data warehouse via transmission equipment and ETL (extract, transformation and load) tools. With the high quality of the data guaranteed, our central task is to make the best use of the operation data and information for drilling analysis and to provide further information to guide later production stages. Applications have been developed and integrated on a uniform platform to interface directly with different layers of the multi-tier DW. Now, engineers in every department spend less time on data handling and more time on applying technology in their real work with the system.展开更多
With the development of Internet of things, cloud computing, mobile Inter- net, the scale of the data shows an alarming growth trend. Agricultural information is an important part of modern agricultural construction, ...With the development of Internet of things, cloud computing, mobile Inter- net, the scale of the data shows an alarming growth trend. Agricultural information is an important part of modern agricultural construction, and the development of a- gricultural industry is becoming more and more deeply with the application of infor- mation technology. This paper reviewed the concept and characteristic of big data, development history of big data at home and abroad, and emphatically expounded the connotation of agricultural big data, development status of agricultural big data at home and abroad, as well as the applications of agricultural big data technology, agriculture big data resources and agricultural big data in various fields.展开更多
This paper reviews the current achievements of the China Argo project. It considers aspects of both the construction of the Argo observing array, float technology, and the quality control and sharing of its data. The ...This paper reviews the current achievements of the China Argo project. It considers aspects of both the construction of the Argo observing array, float technology, and the quality control and sharing of its data. The developments of associated data products and data applications for use in the fields of ocean, atmosphere, and climate research are discussed, particularly those related to tropical cyclones (typhoons), ocean circulation, mesoscale eddies, turbulence, oceanic heat/salt storage and transportation, water masses, and operational oceanic/atmospheric/climatic forecasts and predictions. Finaliy, the challenges and opportunities involved in the long-term maintenance and sustained development of the China Argo ocean observation network are outlined. Discussion also focuses on the necessity for increasing the number of floats in the Indian Ocean and for expanding the regional Argo observation network in the South China Sea, together with the importance of promoting the use of Argo data by the maritime countries of Southeast Asia and India.展开更多
The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carr...The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite's payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration;these include platform construction, data classification, data storage, data format, and data access and acquisition.展开更多
Efficient real time data exchange over the Internet plays a crucial role in the successful application of web-based systems. In this paper, a data transfer mechanism over the Internet is proposed for real time web bas...Efficient real time data exchange over the Internet plays a crucial role in the successful application of web-based systems. In this paper, a data transfer mechanism over the Internet is proposed for real time web based applications. The mechanism incorporates the eXtensible Markup Language (XML) and Hierarchical Data Format (HDF) to provide a flexible and efficient data format. Heterogeneous transfer data is classified into light and heavy data, which are stored using XML and HDF respectively; the HDF data format is then mapped to Java Document Object Model (JDOM) objects in XML in the Java environment. These JDOM data objects are sent across computer networks with the support of the Java Remote Method Invocation (RMI) data transfer infrastructure. Client's defined data priority levels are implemented in RMI, which guides a server to transfer data objects at different priorities. A remote monitoring system for an industrial reactor process simulator is used as a case study to illustrate the proposed data transfer mechanism.展开更多
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a...Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future.展开更多
The unique composition of milk makes this basic foodstuff into an exceptional raw material for the production of new ingredients with desired properties and diverse applications in the food industry. The fractionation...The unique composition of milk makes this basic foodstuff into an exceptional raw material for the production of new ingredients with desired properties and diverse applications in the food industry. The fractionation of milk is the key in the development of those ingredients and products;hence continuous research and development on this field, especially various levels of fractionation and separation by filtration, have been carried out. This review focuses on the production of milk fractions as well as their particular properties, applications and processes that increase their exploitation. Whey proteins and caseins from the protein fraction are excellent emulsifiers and protein supplements. Besides, they can be chemically or enzymatically modified to obtain bioactive peptides with numerous functional and nutritional properties. In this context, valorization techniques of cheese-whey proteins, by-product of dairy industry that constitutes both economic and environmental problems, are being developed. Phospholipids from the milk fat fraction are powerful emulsifiers and also have exclusive nutraceutical properties. In addition, enzyme modification of milk phospholipids makes it possible to tailor emulsifiers with particular properties. However, several aspects remain to be overcome;those refer to a deeper understanding of the healthy, functional and nutritional properties of these new ingredients that might be barriers for its use and acceptability. Additionally, in this review, alternative applications of milk constituents in the non-food area such as in the manufacture of plastic materials and textile fibers are also introduced. The unmet needs, the cross-fertilization in between various protein domains,the carbon footprint requirements, the environmental necessities, the health and wellness new demand, etc., are dominant factors in the search for innovation approaches;these factors are also outlining the further innovation potential deriving from those “apparent” constrains obliging science and technology to take them into account.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
With the advent of the era of big data,traditional financial management has been unable to meet the needs of modern enterprise business.Enterprises hope that financial management has the function of improving the accu...With the advent of the era of big data,traditional financial management has been unable to meet the needs of modern enterprise business.Enterprises hope that financial management has the function of improving the accuracy of corporate financial data,assisting corporate management to make decisions that are more in line with the actual development of the company,and optimizing corporate management systems,thereby comprehensively improving the overall level of the company and ensuring that the company can be in business with the assistance of financial integration,can better improve and develop themselves.Based on the investigation of enterprises and universities,this article analyzes the problem of accounting talent training from both the demand and supply ends,and puts forward some suggestions for the teaching reform of accounting integration with big data in financial colleges and universities,and strives to promote the integration of business and finance.The optimal allocation of enterprise resources will gradually enhance the market competitiveness of enterprises,and explore the application strategies of big data technology in the integration of enterprise business and finance.展开更多
Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of informatio...Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that help</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span><span style="font-family:Verdana;"> depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Na<span style="white-space:nowrap;">ï</span>ve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students’ records to predict degree completion time.展开更多
With the economic development and the popularity of application of electronic computer, electronic commerce has rapid development. More and more commerce and key business has been carried on the lnternet because Inter...With the economic development and the popularity of application of electronic computer, electronic commerce has rapid development. More and more commerce and key business has been carried on the lnternet because Internet has the features of interaction, openness, sharing and so on. However, during the daily commerce, people worry about the security of the network system. So a new technology which can detect the unusual behavior in time has been invented in order to protect the security of network system. The system of intrusion detection needs a lot of new technology to protect the data of the network system. The application of data mining technology in the system of intrusion detection can provide a better assistant to the users to analyze the data and improve the accuracy of the checking system.展开更多
Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved c...Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved computing and storage. Management has become easier, andOAM costs have been significantly reduced. Cloud desktop technology is develop ing rapidly. With this technology, users can flexibly and dynamically use virtual ma chine resources, companies' efficiency of using and allocating resources is greatly improved, and information security is ensured. In most existing virtual cloud desk top solutions, computing and storage are bound together, and data is stored as im age files. This limits the flexibility and expandability of systems and is insufficient for meetinz customers' requirements in different scenarios.展开更多
In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer sever...In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer several advantages over conventional technologies in the near future.However,the potential growth of this technology also attracts attention from hackers,which introduces new challenges for the research community that range from hardware and software security to user privacy and authentication.Therefore,we focus on a particular security concern that is associated with malware detection.The literature presents many countermeasures,but inconsistent results on identical datasets and algorithms raise concerns about model biases,training quality,and complexity.This highlights the need for an adaptive,real-time learning framework that can effectively mitigate malware threats in IoT applications.To address these challenges,(i)we propose an intelligent framework based on Two-step Deep Reinforcement Learning(TwStDRL)that is capable of learning and adapting in real-time to counter malware threats in IoT applications.This framework uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay memory.The stored knowledge allows the model to effectively navigate the environment and maximize cumulative rewards.(ii)To demonstrate the superiority of the TwStDRL framework,we implement and evaluate several machine learning algorithms for comparative analysis that include Support Vector Machines(SVM),Multi-Layer Perceptron,Random Forests,and k-means Clustering.The selection of these algorithms is driven by the inconsistent results reported in the literature,which create doubt about their robustness and reliability in real-world IoT deployments.(iii)Finally,we provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security threats.During analysis,we noted that our proposed TwStDRL scheme achieves an average performance of 99.45%across accuracy,precision,recall,and F1-score,which is an absolute improvement of roughly 3%over the existing malware-detection models.展开更多
The integration of artificial intelligence(AI)into the realm of robotic urologic surgery represents a remarkable paradigm shift in the field of urology and surgical healthcare.AI,with its advanced data analysis and ma...The integration of artificial intelligence(AI)into the realm of robotic urologic surgery represents a remarkable paradigm shift in the field of urology and surgical healthcare.AI,with its advanced data analysis and machine learning capabilities,has not only expedited the evolution of robotic surgical procedures but also significantly improved diagnostic accuracy and surgical outcomes.展开更多
Land cover is recognized as one of the fundamental terrestrial datasets required in land system change and other ecosystem related researches across the globe. The regional differentiation and spatial-temporal variati...Land cover is recognized as one of the fundamental terrestrial datasets required in land system change and other ecosystem related researches across the globe. The regional differentiation and spatial-temporal variation of land cover has significant impact on regional natural environment and socio-economic sustainable development. Under this context, we reconstructed the history land cover data in Siberia to provide a comparable datasets to the land cover datasets in China and abroad. In this paper, the European Space Agency(ESA) Global Land Cover Map(GlobCover), Landsat Thematic Mapper(TM), Enhanced Thematic Mapper(ETM), Multispectral Scanner(MSS) images, Google Earth images and other additional data were used to produce the land cover datasets in 1975 and 2010 in Siberia. Data evaluation show that the total user′s accuracy of land cover data in 2010 was 86.96%, which was higher than ESA GlobCover data in Siberia. The analysis on the land cover changes found that there were no big land cover changes in Siberia from 1975 to 2010 with only a few conversions between different natural forest types. The mainly changes are the conversion from deciduous needleleaf forest to deciduous broadleaf forest, deciduous needleleaf forest to mixed forest, savannas to deciduous needleleaf forest etc., indicating that the dominant driving factor of land cover changes in Siberia was natural element rather than human activities at some extent, which was very different from China. However, our purpose was not just to produce the land cover datasets at two time period or explore the driving factors of land cover changes in Siberia, we also paid attention on the significance and application of the datasets in various fields such as global climate change, geopolitics, cross-border cooperation and so on.展开更多
The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a w...The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a wide range of applications in student learning behavior analysis,teaching resource management,campus safety monitoring,and decision support,which improves the quality of education and management efficiency.Cloud computing technology supports the integration,distribution,and optimal use of educational resources through cloud resource sharing,virtual classrooms,intelligent campus management systems,and Infrastructure-as-a-Service(IaaS)models,which reduce costs and increase flexibility.This paper comprehensively discusses the practical application of big data and cloud computing technologies in smart campuses,showing how these technologies can contribute to the development of smart campuses,and laying the foundation for the future innovation of education models.展开更多
Based on convenience and safety of historical data application, B/S mode is used instead of database management structure of C/S mode, and it can not only combine database and network, but also realize the safe use of...Based on convenience and safety of historical data application, B/S mode is used instead of database management structure of C/S mode, and it can not only combine database and network, but also realize the safe use of historical data online. High-level programming language is used to develop a online management and application system of historical meteorological data based on B/S mode. System data import function can import ground report file sequence of Xuzhou ( including five county-level stations) into the database, construct Oracle database of Xuzhou and the five stations since 1953, and establish data tables of time, day, ten-day, monthly, quarterly and annual historical data, weather information and so forth. Management software of database server is established to realize instruction-level management and scheduling of database and a balanced distribution of resources among users. At the same time, a Web-based management application interface is set up to meet users' needs to retrieve a variety of repositories, and it provides statistical query of time, day, ten-day, monthly, quarterly and annual historical data and climate data for each meteorological element, thereby meeting the needs of meteorological research and all sectors of society for statistical query of meteorological data.展开更多
Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G...Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.展开更多
文摘Expenditure on wells constitute a significant part of the operational costs for a petroleum enterprise, where most of the cost results from drilling. This has prompted drilling departments to continuously look for ways to reduce their drilling costs and be as efficient as possible. A system called the Drilling Comprehensive Information Management and Application System (DCIMAS) is developed and presented here, with an aim at collecting, storing and making full use of the valuable well data and information relating to all drilling activities and operations. The DCIMAS comprises three main parts, including a data collection and transmission system, a data warehouse (DW) management system, and an integrated platform of core applications. With the support of the application platform, the DW management system is introduced, whereby the operation data are captured at well sites and transmitted electronically to a data warehouse via transmission equipment and ETL (extract, transformation and load) tools. With the high quality of the data guaranteed, our central task is to make the best use of the operation data and information for drilling analysis and to provide further information to guide later production stages. Applications have been developed and integrated on a uniform platform to interface directly with different layers of the multi-tier DW. Now, engineers in every department spend less time on data handling and more time on applying technology in their real work with the system.
文摘With the development of Internet of things, cloud computing, mobile Inter- net, the scale of the data shows an alarming growth trend. Agricultural information is an important part of modern agricultural construction, and the development of a- gricultural industry is becoming more and more deeply with the application of infor- mation technology. This paper reviewed the concept and characteristic of big data, development history of big data at home and abroad, and emphatically expounded the connotation of agricultural big data, development status of agricultural big data at home and abroad, as well as the applications of agricultural big data technology, agriculture big data resources and agricultural big data in various fields.
基金The National Natural Science Foundation under contract No.41621064the Science and Technology Basic Work of the Ministry of Science and Technology of China under contract No.2012FY112300the Public Science and Technology Research Funds Projects of Ocean under contract No.201005033
文摘This paper reviews the current achievements of the China Argo project. It considers aspects of both the construction of the Argo observing array, float technology, and the quality control and sharing of its data. The developments of associated data products and data applications for use in the fields of ocean, atmosphere, and climate research are discussed, particularly those related to tropical cyclones (typhoons), ocean circulation, mesoscale eddies, turbulence, oceanic heat/salt storage and transportation, water masses, and operational oceanic/atmospheric/climatic forecasts and predictions. Finaliy, the challenges and opportunities involved in the long-term maintenance and sustained development of the China Argo ocean observation network are outlined. Discussion also focuses on the necessity for increasing the number of floats in the Indian Ocean and for expanding the regional Argo observation network in the South China Sea, together with the importance of promoting the use of Argo data by the maritime countries of Southeast Asia and India.
基金supported by the Civil Space Research project (ZH1 data validation: Ionospheric observatory theory)NFSC grant 41574139 and 41874174
文摘The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite's payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration;these include platform construction, data classification, data storage, data format, and data access and acquisition.
文摘Efficient real time data exchange over the Internet plays a crucial role in the successful application of web-based systems. In this paper, a data transfer mechanism over the Internet is proposed for real time web based applications. The mechanism incorporates the eXtensible Markup Language (XML) and Hierarchical Data Format (HDF) to provide a flexible and efficient data format. Heterogeneous transfer data is classified into light and heavy data, which are stored using XML and HDF respectively; the HDF data format is then mapped to Java Document Object Model (JDOM) objects in XML in the Java environment. These JDOM data objects are sent across computer networks with the support of the Java Remote Method Invocation (RMI) data transfer infrastructure. Client's defined data priority levels are implemented in RMI, which guides a server to transfer data objects at different priorities. A remote monitoring system for an industrial reactor process simulator is used as a case study to illustrate the proposed data transfer mechanism.
文摘Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future.
文摘The unique composition of milk makes this basic foodstuff into an exceptional raw material for the production of new ingredients with desired properties and diverse applications in the food industry. The fractionation of milk is the key in the development of those ingredients and products;hence continuous research and development on this field, especially various levels of fractionation and separation by filtration, have been carried out. This review focuses on the production of milk fractions as well as their particular properties, applications and processes that increase their exploitation. Whey proteins and caseins from the protein fraction are excellent emulsifiers and protein supplements. Besides, they can be chemically or enzymatically modified to obtain bioactive peptides with numerous functional and nutritional properties. In this context, valorization techniques of cheese-whey proteins, by-product of dairy industry that constitutes both economic and environmental problems, are being developed. Phospholipids from the milk fat fraction are powerful emulsifiers and also have exclusive nutraceutical properties. In addition, enzyme modification of milk phospholipids makes it possible to tailor emulsifiers with particular properties. However, several aspects remain to be overcome;those refer to a deeper understanding of the healthy, functional and nutritional properties of these new ingredients that might be barriers for its use and acceptability. Additionally, in this review, alternative applications of milk constituents in the non-food area such as in the manufacture of plastic materials and textile fibers are also introduced. The unmet needs, the cross-fertilization in between various protein domains,the carbon footprint requirements, the environmental necessities, the health and wellness new demand, etc., are dominant factors in the search for innovation approaches;these factors are also outlining the further innovation potential deriving from those “apparent” constrains obliging science and technology to take them into account.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
基金The research was co-completed by School of Journalism and Communication of Hunan Normal University and Financial Big-Data Research Institute of Hunan University of Finance and Economics.This research was funded by the National Natural Science Foundation of China(No.72073041)Open Foundation for the University Innovation Platform in Hunan Province(No.18K103)+2 种基金2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan Province,Open Project(Nos.20181901CRP03,20181901CRP04,20181901CRP05)2020 Hunan Provincial Higher Education Teaching Reform Research Project(Nos.HNJG-2020-1130,HNJG-2020-1124)2020 General Project of Hunan Social Science Fund(No.20B16).
文摘With the advent of the era of big data,traditional financial management has been unable to meet the needs of modern enterprise business.Enterprises hope that financial management has the function of improving the accuracy of corporate financial data,assisting corporate management to make decisions that are more in line with the actual development of the company,and optimizing corporate management systems,thereby comprehensively improving the overall level of the company and ensuring that the company can be in business with the assistance of financial integration,can better improve and develop themselves.Based on the investigation of enterprises and universities,this article analyzes the problem of accounting talent training from both the demand and supply ends,and puts forward some suggestions for the teaching reform of accounting integration with big data in financial colleges and universities,and strives to promote the integration of business and finance.The optimal allocation of enterprise resources will gradually enhance the market competitiveness of enterprises,and explore the application strategies of big data technology in the integration of enterprise business and finance.
文摘Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that help</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span><span style="font-family:Verdana;"> depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Na<span style="white-space:nowrap;">ï</span>ve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students’ records to predict degree completion time.
文摘With the economic development and the popularity of application of electronic computer, electronic commerce has rapid development. More and more commerce and key business has been carried on the lnternet because Internet has the features of interaction, openness, sharing and so on. However, during the daily commerce, people worry about the security of the network system. So a new technology which can detect the unusual behavior in time has been invented in order to protect the security of network system. The system of intrusion detection needs a lot of new technology to protect the data of the network system. The application of data mining technology in the system of intrusion detection can provide a better assistant to the users to analyze the data and improve the accuracy of the checking system.
文摘Cloud computing technology is changing the development and usage patterns of IT infrastructure and applications. Virtualized and distributed systems as well as unified management and scheduling has greatly im proved computing and storage. Management has become easier, andOAM costs have been significantly reduced. Cloud desktop technology is develop ing rapidly. With this technology, users can flexibly and dynamically use virtual ma chine resources, companies' efficiency of using and allocating resources is greatly improved, and information security is ensured. In most existing virtual cloud desk top solutions, computing and storage are bound together, and data is stored as im age files. This limits the flexibility and expandability of systems and is insufficient for meetinz customers' requirements in different scenarios.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R104)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia。
文摘In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer several advantages over conventional technologies in the near future.However,the potential growth of this technology also attracts attention from hackers,which introduces new challenges for the research community that range from hardware and software security to user privacy and authentication.Therefore,we focus on a particular security concern that is associated with malware detection.The literature presents many countermeasures,but inconsistent results on identical datasets and algorithms raise concerns about model biases,training quality,and complexity.This highlights the need for an adaptive,real-time learning framework that can effectively mitigate malware threats in IoT applications.To address these challenges,(i)we propose an intelligent framework based on Two-step Deep Reinforcement Learning(TwStDRL)that is capable of learning and adapting in real-time to counter malware threats in IoT applications.This framework uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay memory.The stored knowledge allows the model to effectively navigate the environment and maximize cumulative rewards.(ii)To demonstrate the superiority of the TwStDRL framework,we implement and evaluate several machine learning algorithms for comparative analysis that include Support Vector Machines(SVM),Multi-Layer Perceptron,Random Forests,and k-means Clustering.The selection of these algorithms is driven by the inconsistent results reported in the literature,which create doubt about their robustness and reliability in real-world IoT deployments.(iii)Finally,we provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security threats.During analysis,we noted that our proposed TwStDRL scheme achieves an average performance of 99.45%across accuracy,precision,recall,and F1-score,which is an absolute improvement of roughly 3%over the existing malware-detection models.
文摘The integration of artificial intelligence(AI)into the realm of robotic urologic surgery represents a remarkable paradigm shift in the field of urology and surgical healthcare.AI,with its advanced data analysis and machine learning capabilities,has not only expedited the evolution of robotic surgical procedures but also significantly improved diagnostic accuracy and surgical outcomes.
基金Under the auspices of National Natural Science Foundation of China(No.41271416)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05090310)
文摘Land cover is recognized as one of the fundamental terrestrial datasets required in land system change and other ecosystem related researches across the globe. The regional differentiation and spatial-temporal variation of land cover has significant impact on regional natural environment and socio-economic sustainable development. Under this context, we reconstructed the history land cover data in Siberia to provide a comparable datasets to the land cover datasets in China and abroad. In this paper, the European Space Agency(ESA) Global Land Cover Map(GlobCover), Landsat Thematic Mapper(TM), Enhanced Thematic Mapper(ETM), Multispectral Scanner(MSS) images, Google Earth images and other additional data were used to produce the land cover datasets in 1975 and 2010 in Siberia. Data evaluation show that the total user′s accuracy of land cover data in 2010 was 86.96%, which was higher than ESA GlobCover data in Siberia. The analysis on the land cover changes found that there were no big land cover changes in Siberia from 1975 to 2010 with only a few conversions between different natural forest types. The mainly changes are the conversion from deciduous needleleaf forest to deciduous broadleaf forest, deciduous needleleaf forest to mixed forest, savannas to deciduous needleleaf forest etc., indicating that the dominant driving factor of land cover changes in Siberia was natural element rather than human activities at some extent, which was very different from China. However, our purpose was not just to produce the land cover datasets at two time period or explore the driving factors of land cover changes in Siberia, we also paid attention on the significance and application of the datasets in various fields such as global climate change, geopolitics, cross-border cooperation and so on.
文摘The current education field is experiencing an innovation driven by big data and cloud technologies,and these advanced technologies play a central role in the construction of smart campuses.Big data technology has a wide range of applications in student learning behavior analysis,teaching resource management,campus safety monitoring,and decision support,which improves the quality of education and management efficiency.Cloud computing technology supports the integration,distribution,and optimal use of educational resources through cloud resource sharing,virtual classrooms,intelligent campus management systems,and Infrastructure-as-a-Service(IaaS)models,which reduce costs and increase flexibility.This paper comprehensively discusses the practical application of big data and cloud computing technologies in smart campuses,showing how these technologies can contribute to the development of smart campuses,and laying the foundation for the future innovation of education models.
文摘Based on convenience and safety of historical data application, B/S mode is used instead of database management structure of C/S mode, and it can not only combine database and network, but also realize the safe use of historical data online. High-level programming language is used to develop a online management and application system of historical meteorological data based on B/S mode. System data import function can import ground report file sequence of Xuzhou ( including five county-level stations) into the database, construct Oracle database of Xuzhou and the five stations since 1953, and establish data tables of time, day, ten-day, monthly, quarterly and annual historical data, weather information and so forth. Management software of database server is established to realize instruction-level management and scheduling of database and a balanced distribution of resources among users. At the same time, a Web-based management application interface is set up to meet users' needs to retrieve a variety of repositories, and it provides statistical query of time, day, ten-day, monthly, quarterly and annual historical data and climate data for each meteorological element, thereby meeting the needs of meteorological research and all sectors of society for statistical query of meteorological data.
基金This work was supported by the National Science and Technology Council,Taiwan,under Project NSTC 112-2221-E-029-015.
文摘Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.