In this paper,we study an integral system involving m equations■where ui>0 in R^(n),0<α<n,and pi>1(i=1,2,…,m).Based on the optimal integrability intervals,we estimate the decay rates of the positive sol...In this paper,we study an integral system involving m equations■where ui>0 in R^(n),0<α<n,and pi>1(i=1,2,…,m).Based on the optimal integrability intervals,we estimate the decay rates of the positive solutions of the system at infinity.But estimating these rates is difficult because the relation between pi(i=1,2,…,m)is uncertain.To overcome this difficulty,we obtain the asymptotic behavior of all cases by discussing them separately.In addition,we also get the radial symmetry of positive solutions under some integrability condition.展开更多
The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chel...The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.展开更多
In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,a...In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,and some novel results are derived.The discovered results generalize previously known results in the context of a double controlled metric type space environment.This article’s proximity point results are the first of their kind in the realm of controlled metric spaces.To build on the results achieved in this article,we present an application demonstrating the usability of the given results.展开更多
The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic sol...The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.展开更多
We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argum...We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent.展开更多
It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollab...It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.展开更多
In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, exi...In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.展开更多
Analytic continuation of some classical formulas with respect to a parameter is discussed. Examples are presented. The validity of these formulas is greatly expanded. Application of these results to solving some integ...Analytic continuation of some classical formulas with respect to a parameter is discussed. Examples are presented. The validity of these formulas is greatly expanded. Application of these results to solving some integral equations with hyper-singular kernels is given.展开更多
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined...In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.展开更多
The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert spa...The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.展开更多
It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to ...It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).展开更多
Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds...Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.展开更多
In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and th...In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.展开更多
In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equat...In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.展开更多
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and p...We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and possessing only a finite number of singularities or a product of such function with a highly oscillatory coefficient function. Contrast to wavelet-like approximations, ourapproximation matrix is not sparse. However, the approximation can be construced in O(n) operations and requires O(n) storage, where n is the number of quadrature points used in the discretization. Moreover, the matrix-vector multiplication cost is of order O(nlogn). Thus our scheme is well suitable for conjugate gradient type methods. Our numerical results indicate that the algorithm is very accurate and stable for high degree polynomial interpolation.展开更多
In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagran...In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.展开更多
In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equati...In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.展开更多
This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic So...This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.展开更多
基金supported by the NSFC(11871278)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23-1669).
文摘In this paper,we study an integral system involving m equations■where ui>0 in R^(n),0<α<n,and pi>1(i=1,2,…,m).Based on the optimal integrability intervals,we estimate the decay rates of the positive solutions of the system at infinity.But estimating these rates is difficult because the relation between pi(i=1,2,…,m)is uncertain.To overcome this difficulty,we obtain the asymptotic behavior of all cases by discussing them separately.In addition,we also get the radial symmetry of positive solutions under some integrability condition.
文摘The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.
文摘In this study,we explore some of the best proximity point results for generalized proximal contractions in the setting of double-controlled metric-type spaces.A non-trivial example is given to elucidate our analysis,and some novel results are derived.The discovered results generalize previously known results in the context of a double controlled metric type space environment.This article’s proximity point results are the first of their kind in the realm of controlled metric spaces.To build on the results achieved in this article,we present an application demonstrating the usability of the given results.
基金Supported by National Natural Science Foundation of China(Grant No.11971015).
文摘The goal of this paper is to investigate the theory of Noether solvability for Volterra singular integral equations(VSIEs)with convolution and Cauchy kernels in a more general function class.To obtain the analytic solutions,we transform such equations into boundary value problems with discontinuous coefficients by the properties of Fourier analysis.In view of the analytical Riemann-Hilbert method,the generalized Liouville theorem and Sokhotski-Plemelj formula,we get the uniqueness and existence of solutions for such problems,and study the asymptotic property of solutions at nodes.Therefore,this paper improves the theory of singular integral equations and boundary value problems.
基金Supported by National Natural Science Foundation of China(Grant No.62363005).
文摘We investigate the blow-up effect of solutions for a non-homogeneous wave equation u_(tt)−∆u−∆u_(t)=I_(0+)^(α)(|u|^(p))+ω(x),where p>1,0≤α<1 andω(x)with∫_(R)^(N)ω(x)dx>0.By a way of combining the argument by contradiction with the test function techniques,we prove that not only any non-trivial solution blows up in finite time under 0<α<1,N≥1 and p>1,but also any non-trivial solution blows up in finite time underα=0,2≤N≤4 and p being the Strauss exponent.
文摘It is well-known that interpolation by rational functions results in a more accurate approximation than the polynomials interpolation.However,classical rational interpolation has some deficiencies such as uncontrollable poles and low convergence order.In contrast with the classical rational interpolants,the generalized barycentric rational interpolants which depend linearly on the interpolated values,yield infinite smooth approximation with no poles in real numbers.In this paper,a numerical collocation approach,based on the generalized barycentric rational interpolation and Gaussian quadrature formula,was introduced to approximate the solution of Volterra-Fredholm integral equations.Three types of points in the solution domain are used as interpolation nodes.The obtained numerical results confirm that the barycentric rational interpolants are efficient tools for solving Volterra-Fredholm integral equations.Moreover,integral equations with Runge’s function as an exact solution,no oscillation occurrs in the obtained approximate solutions so that the Runge’s phenomenon is avoided.
文摘In this study,we aimto investigate certain triple integral transformand its application to a class of partial differentialequations.We discuss various properties of the new transformincluding inversion, linearity, existence, scaling andshifting, etc. Then,we derive several results enfolding partial derivatives and establish amulti-convolution theorem.Further, we apply the aforementioned transform to some classical functions and many types of partial differentialequations involving heat equations,wave equations, Laplace equations, and Poisson equations aswell.Moreover,wedraw some figures to illustrate 3-D contour plots for exact solutions of some selected examples involving differentvalues in their variables.
文摘Analytic continuation of some classical formulas with respect to a parameter is discussed. Examples are presented. The validity of these formulas is greatly expanded. Application of these results to solving some integral equations with hyper-singular kernels is given.
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
文摘In this study, we prove the of existence of solutions of a convolution Volterra integral equation in the space of the Lebesgue integrable function on the set of positive real numbers and with the standard norm defined on it. An operator P was assigned to the convolution integral operator which was later expressed in terms of the superposition operator and the nonlinear operator. Given a ball B<sub>r</sub> belonging to the space L it was established that the operator P maps the ball into itself. The Hausdorff measure of noncompactness was then applied by first proving that given a set M∈ B r the set is bounded, closed, convex and nondecreasing. Finally, the Darbo fixed point theorem was applied on the measure obtained from the set E belonging to M. From this application, it was observed that the conditions for the Darbo fixed point theorem was satisfied. This indicated the presence of at least a fixed point for the integral equation which thereby implying the existence of solutions for the integral equation.
文摘The issues of solvability and construction of a solution of the Fredholm integral equation of the first kind are considered. It is done by immersing the original problem into solving an extremal problem in Hilbert space. Necessary and sufficient conditions for the existence of a solution are obtained. A method of constructing a solution of the Fredholm integral equation of the first kind is developed. A constructive theory of solvability and construction of a solution to a boundary value problem of a linear integrodifferential equation with a distributed delay in control, generated by the Fredholm integral equation of the first kind, has been created.
文摘It is proved that, for the nondivergence elliptic equations Σi,jn=1aijuxixj=f, if f belongs to the generalized Morrey spaces Lp, (w), then uxixj ∈ Lp, (w), where u is the W2,p-solution of the equations. In order to obtain this, the author first establish the weighted boundedness for the commutators of some singular integral operators on Lp, (w).
基金the Bilateral Science and Technology Collaboration Program of Australia 1998 the Natural Science Foundation of China (No. 1
文摘Using integration by parts and Stokes' formula, the authors give a new definition of Hadamard principal value of higher order singular integrals with Bochner-Martinelli kernel on smooth closed orientable manifolds in C-n. The Plemelj formula and composite formula of higher order singular integral are obtained. Differential integral equations on smooth closed orientable manifolds are treated by using the composite formula.
基金Foundation item is supported by the NNSF of China(19971064)
文摘In this paper, the difficulties on calculation in solving singular integral equations are overcome when the restriction of curve of integration to be a closed contour is cancelled. When the curve is an open arc and the solutions for singular integral equations possess singularities of higher order, the solution and the solvable condition for characteristic equations as well as the generalized Noether theorem for complete equations are given.
文摘In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
基金Research supported in part by Hong Kong Research Grant Council grats no.CUHK178/83E
文摘We present a fast algorithm based on polynomial interpolation to approximate matrices arising from the discretization of second-kind integral equations where the kernel function is either smooth, non-oscillatory and possessing only a finite number of singularities or a product of such function with a highly oscillatory coefficient function. Contrast to wavelet-like approximations, ourapproximation matrix is not sparse. However, the approximation can be construced in O(n) operations and requires O(n) storage, where n is the number of quadrature points used in the discretization. Moreover, the matrix-vector multiplication cost is of order O(nlogn). Thus our scheme is well suitable for conjugate gradient type methods. Our numerical results indicate that the algorithm is very accurate and stable for high degree polynomial interpolation.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(Grant No.IRT13097)
文摘In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.
文摘In this paper, we present a brief survey on the updated theory of backward stochas-tic Volterra integral equations (BSVIEs, for short). BSVIEs are a natural generalization of backward stochastic diff erential equations (BSDEs, for short). Some interesting motivations of studying BSVIEs are recalled. With proper solution concepts, it is possible to establish the corresponding well-posedness for BSVIEs. We also survey various comparison theorems for solutions to BSVIEs.
基金Project supported by the Natural Science Foundation of China(10371009)Research Fund for the Doctoral Program Higher Education
文摘This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.