期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Design for a Novel Framework of Hyper-Heuristic Algorithm 被引量:1
1
作者 郭为安 汪镭 +2 位作者 陈明 刘晋飞 吴启迪 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期109-112,共4页
A novel framework of hyper-heuristic algorithm was proposed to improve the adaption of evolutionary algorithms( EAs)in optimization. The algorithm could be changed during the evolutionary progress according to their p... A novel framework of hyper-heuristic algorithm was proposed to improve the adaption of evolutionary algorithms( EAs)in optimization. The algorithm could be changed during the evolutionary progress according to their performances. In addition,a large number of elite individuals were employed in the algorithm and the elite individuals helped algorithm achieve a better performance,while such number of elite individuals stagnated the global convergence in conventional single algorithm. The time complexity was analyzed to demonstrate the novel framework did not increase the time complexity. The simulation results indicate that the proposed framework outperforms any single algorithm that composes the framework. 展开更多
关键词 hyper-heuristic algorithm ADAPTION ELITE individuals EVOLUTIONARY algorithm time COMPLEXITY
在线阅读 下载PDF
Hyper-Heuristic Task Scheduling Algorithm Based on Reinforcement Learning in Cloud Computing 被引量:1
2
作者 Lei Yin Chang Sun +3 位作者 Ming Gao Yadong Fang Ming Li Fengyu Zhou 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1587-1608,共22页
The solution strategy of the heuristic algorithm is pre-set and has good performance in the conventional cloud resource scheduling process.However,for complex and dynamic cloud service scheduling tasks,due to the diff... The solution strategy of the heuristic algorithm is pre-set and has good performance in the conventional cloud resource scheduling process.However,for complex and dynamic cloud service scheduling tasks,due to the difference in service attributes,the solution efficiency of a single strategy is low for such problems.In this paper,we presents a hyper-heuristic algorithm based on reinforcement learning(HHRL)to optimize the completion time of the task sequence.Firstly,In the reward table setting stage of HHRL,we introduce population diversity and integrate maximum time to comprehensively deter-mine the task scheduling and the selection of low-level heuristic strategies.Secondly,a task computational complexity estimation method integrated with linear regression is proposed to influence task scheduling priorities.Besides,we propose a high-quality candidate solution migration method to ensure the continuity and diversity of the solving process.Compared with HHSA,ACO,GA,F-PSO,etc,HHRL can quickly obtain task complexity,select appropriate heuristic strategies for task scheduling,search for the the best makspan and have stronger disturbance detection ability for population diversity. 展开更多
关键词 Task scheduling cloud computing hyper-heuristic algorithm makespan optimization
在线阅读 下载PDF
Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms
3
作者 Mohamad Khairulamirin Md Razali MasriAyob +5 位作者 Abdul Hadi Abd Rahman Razman Jarmin Chian Yong Liu Muhammad Maaya Azarinah Izaham Graham Kendall 《Computer Modeling in Engineering & Sciences》 2025年第2期1233-1288,共56页
The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamic... The Cross-domain Heuristic Search Challenge(CHeSC)is a competition focused on creating efficient search algorithms adaptable to diverse problem domains.Selection hyper-heuristics are a class of algorithms that dynamically choose heuristics during the search process.Numerous selection hyper-heuristics have different imple-mentation strategies.However,comparisons between them are lacking in the literature,and previous works have not highlighted the beneficial and detrimental implementation methods of different components.The question is how to effectively employ them to produce an efficient search heuristic.Furthermore,the algorithms that competed in the inaugural CHeSC have not been collectively reviewed.This work conducts a review analysis of the top twenty competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.A summary of the main characteristics and classification of the algorithms is presented.The analysis underlines efficient and inefficient methods in eight key components,including search points,search phases,heuristic selection,move acceptance,feedback,Tabu mechanism,restart mechanism,and low-level heuristic parameter control.This review analyzes the components referencing the competition’s final leaderboard and discusses future research directions for these components.The effective approaches,identified as having the highest quality index,are mixed search point,iterated search phases,relay hybridization selection,threshold acceptance,mixed learning,Tabu heuristics,stochastic restart,and dynamic parameters.Findings are also compared with recent trends in hyper-heuristics.This work enhances the understanding of selection hyper-heuristics,offering valuable insights for researchers and practitioners aiming to develop effective search algorithms for diverse problem domains. 展开更多
关键词 hyper-heuristicS search algorithms optimization heuristic selection move acceptance learning DIVERSIFICATION parameter control
在线阅读 下载PDF
洪涝灾害情景下卡车-冲锋艇协同运输的动态路径规划
4
作者 刘长石 刘涛 +3 位作者 刘光洪 孙鹏 李君宇 乔睿 《中国安全科学学报》 北大核心 2025年第5期204-212,共9页
为解决洪涝灾害情景下应急物资多周期多批次配送问题,综合考虑洪涝灾情动态变化、卡车-冲锋艇协同运输等因素,以各周期内应急物资的总配送时间最短为目标构建卡车-冲锋艇协同运输的路径规划模型,并设计改进蚁群算法(IACA)结合遗传算法(... 为解决洪涝灾害情景下应急物资多周期多批次配送问题,综合考虑洪涝灾情动态变化、卡车-冲锋艇协同运输等因素,以各周期内应急物资的总配送时间最短为目标构建卡车-冲锋艇协同运输的路径规划模型,并设计改进蚁群算法(IACA)结合遗传算法(GA)的混合启发式算法(HHA)求解;采用多类型算例开展试验,结果表明:HHA能根据动态变化的灾情快速计算出合理的卡车-冲锋艇协同运输方案,有效缩短应急物资的总配送时间,提高配送效率;水淹区数量与冲锋艇数量对应急物资配送路径规划有显著影响,应急物流部门应根据各水淹区受灾情况和资源配置实际,派遣合理数量的冲锋艇,保障应急物流效率。 展开更多
关键词 洪涝灾害 卡车-冲锋艇协同运输 动态路径规划 混合启发式算法(hha) 应急物资
原文传递
A memetic algorithm based on hyper-heuristics for examination timetabling problems
5
作者 Yu Lei Maoguo Gong +1 位作者 Licheng Jiao Yi Zuo 《International Journal of Intelligent Computing and Cybernetics》 EI 2015年第2期139-151,共13页
Purpose–The examination timetabling problem is an NP-hard problem.A large number of approaches for this problem are developed to find more appropriate search strategies.Hyper-heuristic is a kind of representative met... Purpose–The examination timetabling problem is an NP-hard problem.A large number of approaches for this problem are developed to find more appropriate search strategies.Hyper-heuristic is a kind of representative methods.In hyper-heuristic,the high-level search is executed to construct heuristic lists by traditional methods(such as Tabu search,variable neighborhoods and so on).The purpose of this paper is to apply the evolutionary strategy instead of traditional methods for high-level search to improve the capability of global search.Design/methodology/approach–This paper combines hyper-heuristic with evolutionary strategy to solve examination timetabling problems.First,four graph coloring heuristics are employed to construct heuristic lists.Within the evolutionary algorithm framework,the iterative initialization is utilized to improve the number of feasible solutions in the population;meanwhile,the crossover and mutation operators are applied to find potential heuristic lists in the heuristic space(high-level search).At last,two local search methods are combined to optimize the feasible solutions in the solution space(low-level search).Findings–Experimental results demonstrate that the proposed approach obtains competitive results and outperforms the compared approaches on some benchmark instances.Originality/value–The contribution of this paper is the development of a framework which combines evolutionary algorithm and hyper-heuristic for examination timetabling problems. 展开更多
关键词 Evolutionary computation Examination timetabling problem hyper-heuristic Memetic algorithm
在线阅读 下载PDF
超启发式遗传算法柔性作业车间绿色调度问题研究 被引量:9
6
作者 屈新怀 纪飞 +2 位作者 孟冠军 丁必荣 王娇 《机电工程》 CAS 北大核心 2022年第2期255-261,共7页
针对启发式算法通用性较差的问题,建立了多目标柔性作业车间绿色调度模型,设计了一种超启发式遗传算法对问题进行求解。首先,建立了以最大完工时间和最小能耗为目标的柔性作业车间绿色调度模型,并设计了超启发式遗传算法对模型进行优化... 针对启发式算法通用性较差的问题,建立了多目标柔性作业车间绿色调度模型,设计了一种超启发式遗传算法对问题进行求解。首先,建立了以最大完工时间和最小能耗为目标的柔性作业车间绿色调度模型,并设计了超启发式遗传算法对模型进行优化求解;然后,对于高层启发式策略采用遗传算法,随机生成初始种群,对种群进行了选择、交叉和变异操作,并且在常规算子基础上,结合柔性作业车间调度特点设计了9种适应该问题的算子,同时对于低层问题域种群采用了贪婪初始化方法生成;最后,通过基准算例验证了算法的运行效率,通过实例验证了算法的性能。研究结果表明:与参考算法相比,采用贪婪初始化生成初始种群的算法其收敛速度较快,运行效率较高,且不容易陷入局部最优;通过超启发式遗传算法获得的解中最大完工时间的最小值为64,最小能耗为647,解的质量不差于其它算法,算法的通用性较强。 展开更多
关键词 柔性作业车间 绿色调度 超启发式算法 遗传算法
在线阅读 下载PDF
A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems 被引量:12
7
作者 Fuqing Zhao Shilu Di +2 位作者 Jie Cao Jianxin Tang Jonrinaldi 《Complex System Modeling and Simulation》 2021年第2期91-108,共18页
A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems.A classical hyper-heuristic framework consists of two levels,including the high-level heuri... A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems.A classical hyper-heuristic framework consists of two levels,including the high-level heuristic and a set of low-level heuristics.The low-level heuristics to be used in the optimization process are chosen by the high-level tactics in the hyper-heuristic.In this study,a Cooperative Multi-Stage Hyper-Heuristic(CMS-HH)algorithm is proposed to address certain combinatorial optimization problems.In the CMS-HH,a genetic algorithm is introduced to perturb the initial solution to increase the diversity of the solution.In the search phase,an online learning mechanism based on the multi-armed bandits and relay hybridization technology are proposed to improve the quality of the solution.In addition,a multi-point search is introduced to cooperatively search with a single-point search when the state of the solution does not change in continuous time.The performance of the CMS-HH algorithm is assessed in six specific combinatorial optimization problems,including Boolean satisfiability problems,one-dimensional packing problems,permutation flow-shop scheduling problems,personnel scheduling problems,traveling salesman problems,and vehicle routing problems.The experimental results demonstrate the efficiency and significance of the proposed CMS-HH algorithm. 展开更多
关键词 hyper-heuristic algorithm Multi-Armed Bandits(MAB) relay hybridization technology combinatorial optimization
原文传递
HHa中心性算法:一种基于h指数和Ha指数的复杂网络节点排序算法 被引量:8
8
作者 刘佳程 马廷灿 岳名亮 《图书情报工作》 CSSCI 北大核心 2021年第20期92-100,共9页
[目的/意义]针对复杂网络中的重要节点的识别,设计一种节点中心性算法,在传染病防控、舆情监控、产品营销、人才发现等方面发挥作用。[方法/过程]同时考虑节点的高影响力邻居的数量及其总体影响,提出HHa节点中心性算法,在真实网络和人... [目的/意义]针对复杂网络中的重要节点的识别,设计一种节点中心性算法,在传染病防控、舆情监控、产品营销、人才发现等方面发挥作用。[方法/过程]同时考虑节点的高影响力邻居的数量及其总体影响,提出HHa节点中心性算法,在真实网络和人工网络上,使用SIR传染病模型模拟信息传播过程,采用单调函数M和肯德尔相关系数作为评价指标验证HHa中心性算法的有效性、准确性以及稳定性。[结果/结论]实验表明,与7种经典的中心性算法相比,HHa中心性算法得出的排序结果M值为0.999等,排名第2;肯德尔系数为0.845等,高于其他算法0.15左右,排名第1且表现稳定。采用HHa中心性算法识别网络中的重要节点具备可行性。 展开更多
关键词 复杂网络 节点中心性 节点影响力 H指数 hha中心性算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部