Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane c...Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation.展开更多
Hydroxylated Polychlorinated Biphenyls (HO-PCBs) are the metabolite of polychlorinated biphenyls and have drawn much attention because they have hazard on human health and ecosystems. Molecular connectivity index ca...Hydroxylated Polychlorinated Biphenyls (HO-PCBs) are the metabolite of polychlorinated biphenyls and have drawn much attention because they have hazard on human health and ecosystems. Molecular connectivity index calculation has been performed for 19 HO-PCB compounds. A number of statistically based parameters have been extracted. Linear relationship between chromatographic retention index (RI) and the molecular connectivity index of 15 compounds in the training set has been established by multiple linear regression method. The other 4 HO-PCBs are used as the external test set. The result shows that the parameters can be well used to express the quantitative structure-retention relationship (QSRR) of HO-PCBs. Good stability and predictive ability have been demonstrated by leave-one-out cross-validation and the external test set.展开更多
We investigated the occurrence and distribution of terrestrial-derived hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers(OH-GDGTs) in the Han River system and their potential impact on the application of t...We investigated the occurrence and distribution of terrestrial-derived hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers(OH-GDGTs) in the Han River system and their potential impact on the application of the ring index of OH-GDGTs(RI-OH) as a sea surface temperature(SST) proxy in the eastern Yellow Sea. Thereby, we analyzed various samples collected along the Han River and from its surrounding areas(South Korea, n = 34). The OHGDGTs were found in all samples investigated. OH-GDGT-0 was the dominant OH-GDGT component in the estuary and marine samples while OH-GDGT-2 was generally dominant in the soils, the lake sediments and the river suspended particulate matter(SPM). Our results thus suggests a possible warm bias of the RI-OH-derived summer SSTs in the coastal zone to which a large amount of terrestrial organic matter is being supplied. Further studies are necessary to better assess the applicability of the RI-OH proxy in the eastern Yellow Sea.展开更多
A new C 60 derivative hydroxylated fullerene epoxide [C 60 (OH) x (O) y ] was prepared by the reaction of C 60 benzene solution with aqueous NaOH and H 2O 2 in the presence of tetrabutylammoni...A new C 60 derivative hydroxylated fullerene epoxide [C 60 (OH) x (O) y ] was prepared by the reaction of C 60 benzene solution with aqueous NaOH and H 2O 2 in the presence of tetrabutylammonium hydroxide(TBAH) as the catalyzer. The structure of hydroxylated fullerene epoxide was characterized by FT IR, NMR and MS , and it was found that it is easy to hydrolyze to fullerol.展开更多
Hydroxylated Tung oil (HTO) based nonionic polyurethane dispersion (HTO-NPUD) were synthesized using dicyclohexyl methane diisocyanate (HMDI) and HTO as main hydrophobic materials whereas polyethylene glycol-800 (PEG-...Hydroxylated Tung oil (HTO) based nonionic polyurethane dispersion (HTO-NPUD) were synthesized using dicyclohexyl methane diisocyanate (HMDI) and HTO as main hydrophobic materials whereas polyethylene glycol-800 (PEG-800) as hydrophilic chain extender. To effectively study the effects of HTO on properties of NPUD, polypropylene glycol-400(PPG-400) based NPUD was prepared by HMDI reacting with PPG-400 and PEG-800. The structures of those novel nonionic polyurethane dispersions were characterized by FTIR and 1H NMR. Moreover, particle size and size distribution, cloud point and surface tension had been investigated. Results showed that, by comparing with PPG based NPUD (PPG-NPUD), the introduction of HTO into NPUD result in larger particle size and more uniformed particle size distribution, higher cloud point and lower surface tension.展开更多
Polycyclic aromatic hydrocarbons(PAHs)and hydroxylated polycyclic aromatic hydrocarbons(OH-PAHs)were investigated in the soil of the Fildes Peninsula,Antarctica.Various analytes were detected,and the concentration of ...Polycyclic aromatic hydrocarbons(PAHs)and hydroxylated polycyclic aromatic hydrocarbons(OH-PAHs)were investigated in the soil of the Fildes Peninsula,Antarctica.Various analytes were detected,and the concentration of OH-PAHs was 0.3001.847 ng g 1 dry weight,with the dominant components being danthron and 1-hydroxy-phenanthrene.The relationship between soil total organic matter(TOM),OH-PAHs,and the parent PAHs in the soil was studied.No significant correlation was detected between the spatial distribution of OH-PAHs and the occurrence of PAHs,whereas a positive correlation with TOM was found.展开更多
The possibility of a graphene bilayer nanosensor for the detection of explosive molecules was modeled using computational chemistry. A pore was designed on a graphene bilayer structure with three strategically placed ...The possibility of a graphene bilayer nanosensor for the detection of explosive molecules was modeled using computational chemistry. A pore was designed on a graphene bilayer structure with three strategically placed perimeter hydroxyl (OH) groups built around the edge of an indented, two-dimensional hexagonal pore. This hydroxylated pore and models of various explosive molecules were optimized using MM2 molecular mechanics parameters. Values were calculated for the molecule-surface interaction energy (binding energy), E, for 22 explosive molecules on a flat graphene bilayer and on the specially designed hydroxylated pore within the bilayer. The molecule-surface binding energy for trinitrotoluene (TNT) increased from 17.9 kcal/mol on the flat graphene bilayer to 42.3 kcal/mol on the hydroxylated pore. Due to the common functionality of nitro groups that exist on many explosive molecules, the other explosive molecules studied gave similar enhancements based on the specific hydrogen bonding interactions formed within the pore. Each of the 22 explosive adsorbate molecules showed increased molecule-surface interaction on the bilayer hydroxylated pore as compared to the flat bilayer. For the 22 molecules, the average E for the flat graphite surface was 15.8 kcal/mol and for the hydroxylated pore E was 33.8 kcal/mol. An enhancement of adsorption should make a detection device more sensitive. Nanosensors based on a modified graphene surface may be useful for detecting extremely low concentrations of explosive molecules or explosive signature molecules.展开更多
The new chromium (VI) oxidizing reagent isoquinolinium bromochromate (IQBC) was prepared and characterized. The IQBC has been found to be stable and an efficient solid reagent which can be easily prepared in good ...The new chromium (VI) oxidizing reagent isoquinolinium bromochromate (IQBC) was prepared and characterized. The IQBC has been found to be stable and an efficient solid reagent which can be easily prepared in good yield. It act as an efficient brominating reagent for hydroxylated aromatic compounds as well as good oxidizing reagent for the conversion of alcohols to carbonyl compounds in good to excellent yield. The synthesized isoquinolinium bromochromate is more ideal reagent, with number of specification including: higher yield, mild conditions and easy preparation. The results obtained with isoquinolinium bromochromate are satisfactory and suggest that the reagent has few advantages over the existing chromium (VI) reagents.展开更多
Adsorption of single gold (Au) atom at three kinds of sites (hollow, bridge and top) on the hydroxylated β-cristobalite SiO2 (1 1 1) surface was studied using the first-principles calculations with general grad...Adsorption of single gold (Au) atom at three kinds of sites (hollow, bridge and top) on the hydroxylated β-cristobalite SiO2 (1 1 1) surface was studied using the first-principles calculations with general gradient approximation (GGA). The results of adsorption energies and density of electronic states (DOS) suggest that the hollow and bridge sites have the basically equal capability of binding Au, while the ability of the Top site is weaker. Two new energy levels emerge after the adsorption at all sites; in DOS of the Hollow configuration, one locates at -0.15 eV, composed of Au 5d and O 2p electronic states, another just crosses through the Fermi level, consisting of Au 6s, H 1s and O 2p. In addition, Mulliken population analyses indicate that electron transfer takes place between the Au atom and the surface H and O atoms in the Hollow and Bridge configurations, which can be used to interpret the adsorption of Au onto the positions. However, neither H nor O chemically bonds with Au atom.展开更多
An efficient solid-phase synthesis method for novel heterocyclic ketene aminals containing a hydroxyl group has been developed. The loading of the substrate on the resin through the hydroxyl group and the protection o...An efficient solid-phase synthesis method for novel heterocyclic ketene aminals containing a hydroxyl group has been developed. The loading of the substrate on the resin through the hydroxyl group and the protection of the amine by the Schiff base were the key steps in the synthesis.展开更多
Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe cons...Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.展开更多
Some new sulfonylureas and their hydroxylation products had been synthesized from 2-amino-4-methylpyrimidine. Their bioactivities against E. coli AHAS II in vitro were tested and the results indicated that the hydroxy...Some new sulfonylureas and their hydroxylation products had been synthesized from 2-amino-4-methylpyrimidine. Their bioactivities against E. coli AHAS II in vitro were tested and the results indicated that the hydroxylation decreased the inhibition activities of sulfonylureas significantly. Subsequently herbicidal tests against stem-growth of barnyard grass and root-growth of rape confirmed the above conclusion. The preliminary molecular docking studies were also carried out to investigate the binding modes of non-hydroxylated and hydroxylated sulfonylureas with AHAS.展开更多
This study investigated the impacts of spring runoff on the formation of halobenzoquinones(HBQs)and their correlation with common water quality parameters(WQPs)and aromatic amino acids(AAs)in source water.Source water...This study investigated the impacts of spring runoff on the formation of halobenzoquinones(HBQs)and their correlation with common water quality parameters(WQPs)and aromatic amino acids(AAs)in source water.Source water and treated water samples were collected at two drinking water treatment plants in 2021,2022,and 2023.HBQs and aromatic AAs were analyzed using solid phase extraction with high performance liquid chromatography–tandem mass spectrometry methods.The only HBQs detected in treated water were 2,6-dichloro-1,4-benzoquinone(DCBQ)and hydroxy–DCBQ(OH-DCBQ).The concentration of DCBQ was 3-4 times higher during spring runoff events than during non-spring-runoff periods,suggesting the impact of spring runoff on the formation of DCBQ.The DCBQ concentrations in finished water positively correlated with the color,dissolved organic carbon,total organic nitrogen,and specific ultraviolet absorbance WQPs of source water in 2021 and 2022.The temporal trend of the total aromatic AAs determined in source water was strongly and positively correlated to DCBQ in finished water.Finally,there was a significant positive correlation between the concentration of DCBQ determined immediately following the addition of chlorine and the presence of its transformation product,OH-DCBQ,in finished water.The results also showed that powdered activated carbon can remove some of the HBQ precursors in the sourcewater to reduce DCBQ formation.This study demonstrated that WQPs and aromatic AAs are useful indicators for the removal of precursors to reduce HBQ formation during drinking water treatment.展开更多
Macroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment;however,it is mainly studied for point-to-surface contact or special friction pa...Macroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment;however,it is mainly studied for point-to-surface contact or special friction pairs in experiments.In this study,a robust macroscale superlubricity for point-to-point contact on a steel interface was achieved for the first time by using hydroxylated modified boron nitride nanosheets with proton-type ionic liquids(ILs)as additives in ethylene glycol aqueous(EG_(aq)).The detailed superlubricity process and mechanism were revealed by theoretical calculations and segmented experiments.The results indicate that hydration originating from hydrated ions can significantly reduce the shear stress of EG_(aq),which plays an essential role in achieving superlubricity.Moreover,the IL induces a tribochemical reaction to form a friction-protective film.Hydroxylated boron nitride nanosheets(HO-BNNs)function as a polishing and self-repairing agent to disperse the contact stress between friction pairs.Superlubricity involves the change in lubrication state from boundary lubrication to mixed lubrication.This finding can remarkably extend the application of superlubricity for point-to-point contact on steel surfaces for engineering applications.展开更多
Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process o...P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.展开更多
Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare ...Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis.展开更多
Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity a...Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.展开更多
Harnessing bacteria for superoxide production in bioremediation holds immense promise,yet its practical application is hindered by slow production rates and the relatively weak redox potential of superoxide.This study...Harnessing bacteria for superoxide production in bioremediation holds immense promise,yet its practical application is hindered by slow production rates and the relatively weak redox potential of superoxide.This study delves into a cost-effective approach to amplify superoxide production using an Arthrobacter strain,a prevalent soil bacterial genus.Our research reveals that introducing a carbon source along with specific iron-binding ligands,including deferoxamine(DFO),diethylenetriamine pentaacetate(DTPA),citrate,and oxalate,robustly augments microbial superoxide generation.Moreover,our findings suggest that these iron-binding ligands play a pivotal role in converting superoxide into hydroxyl radicals by modulating the electron transfer rate between Fe(Ⅲ)/Fe(Ⅱ)and superoxide.Remarkably,among the tested ligands,only DTPA emerges as a potent promoter of this conversion process when complexed with Fe(Ⅲ).We identify an optimal Fe(Ⅲ)to DTPA ratio of approximately 1:1 for enhancing hydroxyl radical production within the Arthrobacter culture.This research underscores the efficacy of simultaneously introducing carbon sources and DTPA in facilitating superoxide production and its subsequent conversion to hydroxyl radicals,significantly elevating bioremediation performance.Furthermore,our study reveals that DTPA augments superoxide production in cultures of diverse soils,with various soil microorganisms beyond Arthrobacter identified as contributors to superoxide generation.This emphasizes the universal applicability of DTPA across multiple bacterial genera.In conclusion,our study introduces a promising methodology for enhancing microbial superoxide production and its conversion into hydroxyl radicals.These findings hold substantial implications for the deployment of microbial reactive oxygen species in bioremediation,offering innovative solutions for addressing environmental contamination challenges.展开更多
Achieving sustainable energy and chemical production has become an important issue for human society.Photocatalysis has attracted much attention due to its ability to harness solar energy to drive chemical reactions.M...Achieving sustainable energy and chemical production has become an important issue for human society.Photocatalysis has attracted much attention due to its ability to harness solar energy to drive chemical reactions.Metal sulfide-based photocatalysts(e.g.,Cd S,Zn In2S4)have shown substantial potential in biomass-based hydroxyl compound valorization.In this review,we summarize the recent progress in metal sulfide-based photocatalysts for the photo upgrading of biomass-derived hydroxyl compounds coupled with reduction reactions(e.g.,CO_(2)reduction,H_(2)O_(2)generation,and H_(2)evolution).The mechanism of biomass redox reactions is discussed,highlighting the potential of realizing the valorization of biomass-derived compounds coupled with the reduction reactions,which is beneficial for researchers to actively explore biomass biorefinery pathways in order to modulate the selectivity of the valueadded products.Various modification strategies are presented,including elemental doping,defect engineering,heterojunction construction,and cocatalyst loading.These strategies modulate the energy band structure,surface electron density,and built-in electric field strength of metal sulfide-based photocatalysts,thereby enhancing their photocatalytic performance.The challenges and prospects of metal sulfidebased photocatalysts in biomass valorization are analyzed.This approach contributes to the development of photocatalysts that can accelerate biomass photo-upgrading coupling reactions.This review aims to provide deeper insights into the photocatalytic biorefinery pathways and contribute to the development of functionalized photocatalysts that can accelerate biomass photo upgrading,highlighting the synergistic effects of multiple coupling reactions.展开更多
基金supported by the National Natural Science Foundation of China (21225312, U1462120, 21473206)Cheung Kong Scholars Programme of China (T2015036)~~
文摘Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene,offering rather high selectivity(95%) but only small amount of CO2 formation(0.4%) at a given ethane conversion of 11%.Even at high conversion level of 63%,the selectivity of ethylene retained at 80%,which is competitive with the energy-demanding industrialized steam cracking route.A long-term test for 200 h resulted in stable conversion and product selectivity,showing the excellent catalytic stability.Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation.
基金supported by the Natural Science Foundation of Zhejiang Province(No.LY12B07013 LY12C03009+1 种基金 Y5090304)State Key Laboratory of Environmental Chemistry and Ecotoxicology,Chinese Academy of Sciences(KF2011-19)
文摘Hydroxylated Polychlorinated Biphenyls (HO-PCBs) are the metabolite of polychlorinated biphenyls and have drawn much attention because they have hazard on human health and ecosystems. Molecular connectivity index calculation has been performed for 19 HO-PCB compounds. A number of statistically based parameters have been extracted. Linear relationship between chromatographic retention index (RI) and the molecular connectivity index of 15 compounds in the training set has been established by multiple linear regression method. The other 4 HO-PCBs are used as the external test set. The result shows that the parameters can be well used to express the quantitative structure-retention relationship (QSRR) of HO-PCBs. Good stability and predictive ability have been demonstrated by leave-one-out cross-validation and the external test set.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(No.NRF-2016R1A2B3015388)
文摘We investigated the occurrence and distribution of terrestrial-derived hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers(OH-GDGTs) in the Han River system and their potential impact on the application of the ring index of OH-GDGTs(RI-OH) as a sea surface temperature(SST) proxy in the eastern Yellow Sea. Thereby, we analyzed various samples collected along the Han River and from its surrounding areas(South Korea, n = 34). The OHGDGTs were found in all samples investigated. OH-GDGT-0 was the dominant OH-GDGT component in the estuary and marine samples while OH-GDGT-2 was generally dominant in the soils, the lake sediments and the river suspended particulate matter(SPM). Our results thus suggests a possible warm bias of the RI-OH-derived summer SSTs in the coastal zone to which a large amount of terrestrial organic matter is being supplied. Further studies are necessary to better assess the applicability of the RI-OH proxy in the eastern Yellow Sea.
文摘A new C 60 derivative hydroxylated fullerene epoxide [C 60 (OH) x (O) y ] was prepared by the reaction of C 60 benzene solution with aqueous NaOH and H 2O 2 in the presence of tetrabutylammonium hydroxide(TBAH) as the catalyzer. The structure of hydroxylated fullerene epoxide was characterized by FT IR, NMR and MS , and it was found that it is easy to hydrolyze to fullerol.
文摘Hydroxylated Tung oil (HTO) based nonionic polyurethane dispersion (HTO-NPUD) were synthesized using dicyclohexyl methane diisocyanate (HMDI) and HTO as main hydrophobic materials whereas polyethylene glycol-800 (PEG-800) as hydrophilic chain extender. To effectively study the effects of HTO on properties of NPUD, polypropylene glycol-400(PPG-400) based NPUD was prepared by HMDI reacting with PPG-400 and PEG-800. The structures of those novel nonionic polyurethane dispersions were characterized by FTIR and 1H NMR. Moreover, particle size and size distribution, cloud point and surface tension had been investigated. Results showed that, by comparing with PPG based NPUD (PPG-NPUD), the introduction of HTO into NPUD result in larger particle size and more uniformed particle size distribution, higher cloud point and lower surface tension.
基金The research was supported by the National Natural Science Foundation of China(Grant nos.41976222,41406088 and 21377032)Open Fund for the Key Laboratory of Ocean-Atmospheric Chemistry and Global Change,State Oceanic Administration,China(Grant no.GCMAC1812)+2 种基金Open Fund for the State Key Laboratory of Environmental Chemistry and Ecotoxicology,China(Grant no.KF2018-05)National Key Research and Development Project of China(Grant no.2019YF0901104)We also thank Chinese Arctic and Antarctic Administration and Polar Research Institute of China for the arrangements during the 30th Chinese National Antarctic Research Expedition in 2014.
文摘Polycyclic aromatic hydrocarbons(PAHs)and hydroxylated polycyclic aromatic hydrocarbons(OH-PAHs)were investigated in the soil of the Fildes Peninsula,Antarctica.Various analytes were detected,and the concentration of OH-PAHs was 0.3001.847 ng g 1 dry weight,with the dominant components being danthron and 1-hydroxy-phenanthrene.The relationship between soil total organic matter(TOM),OH-PAHs,and the parent PAHs in the soil was studied.No significant correlation was detected between the spatial distribution of OH-PAHs and the occurrence of PAHs,whereas a positive correlation with TOM was found.
文摘The possibility of a graphene bilayer nanosensor for the detection of explosive molecules was modeled using computational chemistry. A pore was designed on a graphene bilayer structure with three strategically placed perimeter hydroxyl (OH) groups built around the edge of an indented, two-dimensional hexagonal pore. This hydroxylated pore and models of various explosive molecules were optimized using MM2 molecular mechanics parameters. Values were calculated for the molecule-surface interaction energy (binding energy), E, for 22 explosive molecules on a flat graphene bilayer and on the specially designed hydroxylated pore within the bilayer. The molecule-surface binding energy for trinitrotoluene (TNT) increased from 17.9 kcal/mol on the flat graphene bilayer to 42.3 kcal/mol on the hydroxylated pore. Due to the common functionality of nitro groups that exist on many explosive molecules, the other explosive molecules studied gave similar enhancements based on the specific hydrogen bonding interactions formed within the pore. Each of the 22 explosive adsorbate molecules showed increased molecule-surface interaction on the bilayer hydroxylated pore as compared to the flat bilayer. For the 22 molecules, the average E for the flat graphite surface was 15.8 kcal/mol and for the hydroxylated pore E was 33.8 kcal/mol. An enhancement of adsorption should make a detection device more sensitive. Nanosensors based on a modified graphene surface may be useful for detecting extremely low concentrations of explosive molecules or explosive signature molecules.
文摘The new chromium (VI) oxidizing reagent isoquinolinium bromochromate (IQBC) was prepared and characterized. The IQBC has been found to be stable and an efficient solid reagent which can be easily prepared in good yield. It act as an efficient brominating reagent for hydroxylated aromatic compounds as well as good oxidizing reagent for the conversion of alcohols to carbonyl compounds in good to excellent yield. The synthesized isoquinolinium bromochromate is more ideal reagent, with number of specification including: higher yield, mild conditions and easy preparation. The results obtained with isoquinolinium bromochromate are satisfactory and suggest that the reagent has few advantages over the existing chromium (VI) reagents.
基金Funded by the Fundamental Research Funds for the Central Universities (No. CUGL100240)
文摘Adsorption of single gold (Au) atom at three kinds of sites (hollow, bridge and top) on the hydroxylated β-cristobalite SiO2 (1 1 1) surface was studied using the first-principles calculations with general gradient approximation (GGA). The results of adsorption energies and density of electronic states (DOS) suggest that the hollow and bridge sites have the basically equal capability of binding Au, while the ability of the Top site is weaker. Two new energy levels emerge after the adsorption at all sites; in DOS of the Hollow configuration, one locates at -0.15 eV, composed of Au 5d and O 2p electronic states, another just crosses through the Fermi level, consisting of Au 6s, H 1s and O 2p. In addition, Mulliken population analyses indicate that electron transfer takes place between the Au atom and the surface H and O atoms in the Hollow and Bridge configurations, which can be used to interpret the adsorption of Au onto the positions. However, neither H nor O chemically bonds with Au atom.
文摘An efficient solid-phase synthesis method for novel heterocyclic ketene aminals containing a hydroxyl group has been developed. The loading of the substrate on the resin through the hydroxyl group and the protection of the amine by the Schiff base were the key steps in the synthesis.
基金financially supported by the National Natural Science Foundation of China (No. 21674011)Beijing Municipal Natural Science Foundation (No. 2172040)
文摘Highly sensitive methods are important for monitoring the concentration of metal ions in industrial wastewater.Here,we developed a new probe for the determination of metal ions by fluorescence quenching.The probe consists of hydroxylated graphene quantum dots(H-GQDs),prepared from GQDs by electrochemical method followed by surface hydroxylation.It is a non-reactive indicator with high sensitivity and detection limits of 0.01μM for Cu2+,0.005μM for Al3+,0.04μM for Fe3+,and 0.02μM for Cr3+.In addition,the low biotoxicity and excellent solubility of H-GQDs make them promising for application in wastewater metal ion detection.
文摘Some new sulfonylureas and their hydroxylation products had been synthesized from 2-amino-4-methylpyrimidine. Their bioactivities against E. coli AHAS II in vitro were tested and the results indicated that the hydroxylation decreased the inhibition activities of sulfonylureas significantly. Subsequently herbicidal tests against stem-growth of barnyard grass and root-growth of rape confirmed the above conclusion. The preliminary molecular docking studies were also carried out to investigate the binding modes of non-hydroxylated and hydroxylated sulfonylureas with AHAS.
基金supported by grants from the Natural Sciences and Engineering Research Council of Canada(NSERC)Alberta Innovates,and the Canada Research Chairs Program.The authors acknowledge the support of the NSERC Postgraduate Doctoral Scholarship(NJPW),the Alberta Innovates Graduate Student Scholarship(KC),and the 75th Anniversary Graduate Student Award and the Graduate Student Recruitment Scholarship of the Faculty of Medicine and Dentistry at the University of Alberta(KNMC).
文摘This study investigated the impacts of spring runoff on the formation of halobenzoquinones(HBQs)and their correlation with common water quality parameters(WQPs)and aromatic amino acids(AAs)in source water.Source water and treated water samples were collected at two drinking water treatment plants in 2021,2022,and 2023.HBQs and aromatic AAs were analyzed using solid phase extraction with high performance liquid chromatography–tandem mass spectrometry methods.The only HBQs detected in treated water were 2,6-dichloro-1,4-benzoquinone(DCBQ)and hydroxy–DCBQ(OH-DCBQ).The concentration of DCBQ was 3-4 times higher during spring runoff events than during non-spring-runoff periods,suggesting the impact of spring runoff on the formation of DCBQ.The DCBQ concentrations in finished water positively correlated with the color,dissolved organic carbon,total organic nitrogen,and specific ultraviolet absorbance WQPs of source water in 2021 and 2022.The temporal trend of the total aromatic AAs determined in source water was strongly and positively correlated to DCBQ in finished water.Finally,there was a significant positive correlation between the concentration of DCBQ determined immediately following the addition of chlorine and the presence of its transformation product,OH-DCBQ,in finished water.The results also showed that powdered activated carbon can remove some of the HBQ precursors in the sourcewater to reduce DCBQ formation.This study demonstrated that WQPs and aromatic AAs are useful indicators for the removal of precursors to reduce HBQ formation during drinking water treatment.
基金The authors are gratefully for the financial support provided by the Youth Innovation Promotion Association CAS(2021422).
文摘Macroscale superlubricity is a prospective strategy in modern tribology to dramatically reduce friction and wear of mechanical equipment;however,it is mainly studied for point-to-surface contact or special friction pairs in experiments.In this study,a robust macroscale superlubricity for point-to-point contact on a steel interface was achieved for the first time by using hydroxylated modified boron nitride nanosheets with proton-type ionic liquids(ILs)as additives in ethylene glycol aqueous(EG_(aq)).The detailed superlubricity process and mechanism were revealed by theoretical calculations and segmented experiments.The results indicate that hydration originating from hydrated ions can significantly reduce the shear stress of EG_(aq),which plays an essential role in achieving superlubricity.Moreover,the IL induces a tribochemical reaction to form a friction-protective film.Hydroxylated boron nitride nanosheets(HO-BNNs)function as a polishing and self-repairing agent to disperse the contact stress between friction pairs.Superlubricity involves the change in lubrication state from boundary lubrication to mixed lubrication.This finding can remarkably extend the application of superlubricity for point-to-point contact on steel surfaces for engineering applications.
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
文摘P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.
文摘Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis.
文摘Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials.
基金supported by the National Natural Science Foundation of China(Nos.52170156,52250056,and 52293443)the Shenzhen Science and Technology Program(No.KQTD20190929172630447).
文摘Harnessing bacteria for superoxide production in bioremediation holds immense promise,yet its practical application is hindered by slow production rates and the relatively weak redox potential of superoxide.This study delves into a cost-effective approach to amplify superoxide production using an Arthrobacter strain,a prevalent soil bacterial genus.Our research reveals that introducing a carbon source along with specific iron-binding ligands,including deferoxamine(DFO),diethylenetriamine pentaacetate(DTPA),citrate,and oxalate,robustly augments microbial superoxide generation.Moreover,our findings suggest that these iron-binding ligands play a pivotal role in converting superoxide into hydroxyl radicals by modulating the electron transfer rate between Fe(Ⅲ)/Fe(Ⅱ)and superoxide.Remarkably,among the tested ligands,only DTPA emerges as a potent promoter of this conversion process when complexed with Fe(Ⅲ).We identify an optimal Fe(Ⅲ)to DTPA ratio of approximately 1:1 for enhancing hydroxyl radical production within the Arthrobacter culture.This research underscores the efficacy of simultaneously introducing carbon sources and DTPA in facilitating superoxide production and its subsequent conversion to hydroxyl radicals,significantly elevating bioremediation performance.Furthermore,our study reveals that DTPA augments superoxide production in cultures of diverse soils,with various soil microorganisms beyond Arthrobacter identified as contributors to superoxide generation.This emphasizes the universal applicability of DTPA across multiple bacterial genera.In conclusion,our study introduces a promising methodology for enhancing microbial superoxide production and its conversion into hydroxyl radicals.These findings hold substantial implications for the deployment of microbial reactive oxygen species in bioremediation,offering innovative solutions for addressing environmental contamination challenges.
基金the financial support from the National Natural Science Foundation of China(No.22178181)the Fundamental Research Funds for the Central Universities(Nankai University(No.63253204))。
文摘Achieving sustainable energy and chemical production has become an important issue for human society.Photocatalysis has attracted much attention due to its ability to harness solar energy to drive chemical reactions.Metal sulfide-based photocatalysts(e.g.,Cd S,Zn In2S4)have shown substantial potential in biomass-based hydroxyl compound valorization.In this review,we summarize the recent progress in metal sulfide-based photocatalysts for the photo upgrading of biomass-derived hydroxyl compounds coupled with reduction reactions(e.g.,CO_(2)reduction,H_(2)O_(2)generation,and H_(2)evolution).The mechanism of biomass redox reactions is discussed,highlighting the potential of realizing the valorization of biomass-derived compounds coupled with the reduction reactions,which is beneficial for researchers to actively explore biomass biorefinery pathways in order to modulate the selectivity of the valueadded products.Various modification strategies are presented,including elemental doping,defect engineering,heterojunction construction,and cocatalyst loading.These strategies modulate the energy band structure,surface electron density,and built-in electric field strength of metal sulfide-based photocatalysts,thereby enhancing their photocatalytic performance.The challenges and prospects of metal sulfidebased photocatalysts in biomass valorization are analyzed.This approach contributes to the development of photocatalysts that can accelerate biomass photo-upgrading coupling reactions.This review aims to provide deeper insights into the photocatalytic biorefinery pathways and contribute to the development of functionalized photocatalysts that can accelerate biomass photo upgrading,highlighting the synergistic effects of multiple coupling reactions.