Given that a large amount of crude oil remains on the surface of rocks and is difficult to produce after conventional waterflooding,a new superwetting oil displacement system incorporating the synergy between a hydrox...Given that a large amount of crude oil remains on the surface of rocks and is difficult to produce after conventional waterflooding,a new superwetting oil displacement system incorporating the synergy between a hydroxyl anion compound(1OH-1C)and an extended surfactant(S-C_(13)PO_(13)S)was designed.The interfacial tension,contact angle and emulsification performance of the system were measured.The oil displacement effects and improved oil recovery(IOR)mechanisms of 1OH-1C,S-C_(13)PO_(13)S and their compound system were investigated by microscopic visualization oil displacement experiments and core displacement experiments.The results show that 1OH-1C creates a superwetting interface and electrostatic separation pressure on the solid surface,which destroys the strong interactions between crude oil and quartz to peel off the oil film.S-C_(13)PO_(13)S has low interfacial tension,which can promote the flow of remaining oil and emulsify it into oil-in-water emulsions.The compound system of 1OH-1C and S-C_(13)PO_(13)S has both superwettability and low IFT,which can effectively improve oil recovery through a synergistic effect.The oil displacement experiment of low-permeability natural core shows that the compound solution can increase the oil recovery by 16.4 percentage points after waterflooding.This new high-efficiency system is promising for greatly improving oil recovery in low-permeability reservoirs.展开更多
基金Supported by the National Key R&D Program of China(2019YFA0708700,2023YFF0614100)CNPC Major Science and Technology Project(2021ZZ01,2023ZZ04).
文摘Given that a large amount of crude oil remains on the surface of rocks and is difficult to produce after conventional waterflooding,a new superwetting oil displacement system incorporating the synergy between a hydroxyl anion compound(1OH-1C)and an extended surfactant(S-C_(13)PO_(13)S)was designed.The interfacial tension,contact angle and emulsification performance of the system were measured.The oil displacement effects and improved oil recovery(IOR)mechanisms of 1OH-1C,S-C_(13)PO_(13)S and their compound system were investigated by microscopic visualization oil displacement experiments and core displacement experiments.The results show that 1OH-1C creates a superwetting interface and electrostatic separation pressure on the solid surface,which destroys the strong interactions between crude oil and quartz to peel off the oil film.S-C_(13)PO_(13)S has low interfacial tension,which can promote the flow of remaining oil and emulsify it into oil-in-water emulsions.The compound system of 1OH-1C and S-C_(13)PO_(13)S has both superwettability and low IFT,which can effectively improve oil recovery through a synergistic effect.The oil displacement experiment of low-permeability natural core shows that the compound solution can increase the oil recovery by 16.4 percentage points after waterflooding.This new high-efficiency system is promising for greatly improving oil recovery in low-permeability reservoirs.