Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic natu...Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.展开更多
Water often presents significant challenges in catalysts by deactivating active sites,poisoning the reaction,and even degrading composite structure.These challenges are amplified when the water participates as a react...Water often presents significant challenges in catalysts by deactivating active sites,poisoning the reaction,and even degrading composite structure.These challenges are amplified when the water participates as a reactant and is fed as a liquid phase,such as trickle bed-type reactors in a hydrogen-water isotope exchange(HIE)reaction.The key balance in such multiphase reactions is the precise control of catalyst design to repel bulk liquid water while diffusing water vapor.Herein,a platinum-incorporated metal-organic framework(MIL-101)based bifunctional hydrophobic catalyst functionalized with long alkyl chains(C_(12),dodecylamine)and further manufactured with poly(vinylidene fluoride),Pt@MIL-101-12/PVDF,has been developed which can show dramatically improved catalytic activity under multi-phase reactions involving hydrogen gas and liquid water.Pt@MIL-101-12/PVDF demonstrates enhanced macroscopic water-blocking properties,with a notable reduction of over 65%in water adsorption capacity and newly introduced liquid water repellency.while exhibiting a negligible increase in mass transfer resistance,i.e.,bifunctional hydrophobicity.Excellent catalytic activity,evaluated via HIE reaction,and its durability underscore the impact of bifunctional hydrophobicity.In situ DRIFTS analysis elucidates water adsorption/desorption dynamics within the catalyst composite,highlighting reinforced water diffusion at the microscopic level,affirming the catalyst's bifunctionality in different length scales.With demonstrated radiation resistance,Pt@MIL-101-12/PVDF emerges as a promising candidate for isotope exchange reactions.展开更多
Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment pr...Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment process(power and time),PDMS solution concentration,and maceration time on the hydrophobic performance of bamboo specimens were studied,and the optimal treatment conditions for improving the hydrophobicity were determined.Scanning electron microscopy(SEM),fourier transform infrared(FTIR),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)were used to analyze the surface morphology,chemical structure,and functional groups in the specimens before and after the plasma and PDMS solution treatments under optimal conditions.Response surface analysis was also performed to determine the optimal treatment conditions.Results show that the hydrophobic performance of the Moso bamboo surface is effectively improved and the surface energy is reduced after the coordinated treatment.The optimal conditions for improving the hydrophobic performance of Moso bamboo surface are a treatment power of 800 W,treatment time of 15 s,O_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for O_(2)plasma treatment and a treatment power of 1000 W,treatment time of 15 s,N_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for N_(2)plasma treatment.After treatment,silicone oil particles and plasma etching traces are observed on the bamboo surface.Moreover,Si-O bonds in the PDMS solution are grafted to the bamboo surface via covalent bonds,thereby increasing the contact angle and decreasing the surface energy to achieve the hydrophobic effect.展开更多
CO_(2)reduction reaction(CO_(2)RR)electrolyzers based on gas diffusion electrode(GDE)enable the direct mass transfer of CO_(2)to the catalyst surface for participation in the reaction,thereby establishing an efficient...CO_(2)reduction reaction(CO_(2)RR)electrolyzers based on gas diffusion electrode(GDE)enable the direct mass transfer of CO_(2)to the catalyst surface for participation in the reaction,thereby establishing an efficient three-phase reaction interface that significantly enhances current density.However,current hydrophobic modification methods face difficulties in achieving precise and substantial control over wettability,and the hydrophobic modifiers tend to significantly impair the conductivity of the electrode and ion transport capabilities.This study employs Nafion ionomers to hydrophobically modify the threedimensional catalyst layer,revealing the bifunctionality of Nafion.The fluorinated backbone of Nafion ensures the hydrophobicity of the entire catalyst layer,while its sulfonic acid groups promote ion transport,without significantly affecting the conductivity of the electrode.Furthermore,by employing modifiers with distinct wettability characteristics,a highly efficient and large-scale manipulation of the hydrophilic/hydrophobic properties of the catalyst layer was successfully realized.The electrode,constructed with silver nanopowder as a representative catalyst and modified with the hydrophobic ionomer Nafion,exhibits a substantial enhancement in both catalytic activity and durability.The optimized electrode exhibited exceptional electrocatalytic performance in both flow cell and membrane electrode assembly(MEA)configurations.Notably,in the MEA,the electrode achieved a remarkable CO Faradaic efficiency(FE)of 93.3%at a total current density of 200 mA cm^(-2),while maintaining stable operation for over 62 h.展开更多
As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal...As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.展开更多
A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses the...A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.展开更多
Plants possess a hydrophobic layer of wax on their aerial surface,consisting mainly of amorphous intra-cuticular wax and epicuticular wax crystals(Kunst and Samuels,2003).This waxy coating contains a wide variety of v...Plants possess a hydrophobic layer of wax on their aerial surface,consisting mainly of amorphous intra-cuticular wax and epicuticular wax crystals(Kunst and Samuels,2003).This waxy coating contains a wide variety of very-long-chain fatty acids(VLCFAs)and their derivatives,including alkanes,alcohols,aldehydes,esters,and ketones.展开更多
Two dimensional(2D)membranes show huge potential for ion sieving applications owing to their regular sub-nanometer channels.How to engineer the channel micro-chemistry to pursue higher ion selectivity while maintainin...Two dimensional(2D)membranes show huge potential for ion sieving applications owing to their regular sub-nanometer channels.How to engineer the channel micro-chemistry to pursue higher ion selectivity while maintaining promising ion transports remains challenging.In this work,we propose building rigidly confined charged 2D graphene oxide(GO)channels and manipulating their hydrophilicity via self-designed poly(ionic liquid)s(PILs)intercalation.The imidazolium cations on the PILs backbone not only stabilize the GO interlayer channels via non-covalent interactions but also create a positively charged environment for attracting anions entering into channels.The hydrophilicity variations of the side chains on the PILs help with realizing the regulation of the channel hydrophilicity.Under the electrodialysis mode,the GO membrane with the strongest hydrophobicity yields an impressive selectivity of 172.2 for Cl^(-)and SO_(4)^(2-),which is 48 times of Neosepta ACS,a commercial membrane specialized for anion separation.This work offers a brand-new route in exploring high-performance ion selective membranes.展开更多
Environmentally friendly slow-release fertilizers are highly desired in sustainable agriculture.Encapsulating fertilizers can routinely achieve controlled releasing performances but suffers from short-term effectivene...Environmentally friendly slow-release fertilizers are highly desired in sustainable agriculture.Encapsulating fertilizers can routinely achieve controlled releasing performances but suffers from short-term effectiveness or environmental unfriendliness.In this work,a bio-derived shellac incorporated with polydodecyl trimethoxysilane(SL-PDTMS)capsule was developed for long-term controlled releasing urea.Due to enhanced hydrophobicity and thus water resistance,the SL-PDTMS encapsulated urea fertilizer(SPEU)demonstrated a long-term effectiveness of 60 d,compared with SL encapsulated urea fertilizer(SEU,30 d)and pure urea fertilizer(U,5 min).In addition,SPEU showed a broad pH tolerance from 5.0 to 9.0,covering most various soil pH conditions.In the pot experiments,promoted growth of maize seedlings was observed after applying SPEU,rendering it promising as a high-performance controlled-released fertilizer.展开更多
Aqueous zinc-ion batteries(AZIBs)are pivotal for achieving net-zero goals,yet their commercialization is impeded by zinc dendrites,parasitic reactions,and interfacial instability.Current debates persist on the interpl...Aqueous zinc-ion batteries(AZIBs)are pivotal for achieving net-zero goals,yet their commercialization is impeded by zinc dendrites,parasitic reactions,and interfacial instability.Current debates persist on the interplay between zincophilic-hydrophilic and zincophobic-hydrophobic interactions at the anode-electrolyte interface.Herein,a conceptual framework that decouples these competing effects was proposed,enabling the rational design of a dual-layer architecture with an inner zincophilic layer for Zn^(2+)flux homogenization and an outer hydrophobic layer for water shielding.Through in situ and ex situ analyses,the synergistic mechanism was elucidated.During the cycling process,the zincophilic interface guides uniform Zn deposition,while the hydrophobic coating suppresses H_(2)O-induced side reactions.This dual modification achieves a Zn||Cu cell with an unprecedented 99.89%Coulombic efficiency and 975-cycle stability.This work resolves the long-standing controversy over interfacial affinity design,offering a scalable and industrially viable strategy to enhance AZIBs’durability without sacrificing energy density.展开更多
Cu(I)based CO adsorbents are prone to oxidation and deactivation owing to the sensitivity of Cu^(+) ions to oxygen and moisture in the humid air.In this study,in order to improve its antioxidant performance,hydrophobi...Cu(I)based CO adsorbents are prone to oxidation and deactivation owing to the sensitivity of Cu^(+) ions to oxygen and moisture in the humid air.In this study,in order to improve its antioxidant performance,hydrophobic Cu(I)based adsorbents were fabricated using polytetrafluoroethylene(PTFE)for the hydrophobic modification,effectively avoiding the contact of CuCl active species with moisture,thereby inhibiting the oxidation of the Cu(I)based adsorbents.The successful introduction of PTFE into the activated carbon(AC)carrier significantly improves the hydrophobicity of the adsorbent.The optimal adsorbent CuCl(6)@AC-PTFE(0.10%)with the CuCl loading of 6 mmol·g^(-1)and the PTFE mass concentration of 0.10%exhibits an excellent CO adsorption capacity of 3.61 mmol·g^(-1)(303 K,500 kPa)as well as high CO/CO_(2)and CO/N_(2)adsorption selectivities of 29 and 203(303 K,100 kPa).Particularly,compared with the unmodified adsorbents,the antioxidant performance of modified adsorbent CuCl(6)@AC-PTFE(0.10%)is significantly improved,holding 86%of CO adsorption performance of fresh one after 24 h of exposure to humid air with a relative humidity of 70%,making the fabricated composite a promising adsorbent for CO separation.展开更多
Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl func...Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.展开更多
The waterproof performance,mechanical properties,chemical composition,microstructure,and pore structure of hydrophobically-modified geopolymer concrete are investigated before and after dry-wet cycles,to determine the...The waterproof performance,mechanical properties,chemical composition,microstructure,and pore structure of hydrophobically-modified geopolymer concrete are investigated before and after dry-wet cycles,to determine the long-term feasibility of using hydrophobically-modified geopolymer concrete in wet environments.We use two types of organic modifying agents:polydimethylsiloxane(PDMS)and sodium methyl siliconate(SMS).The experimental results show that incorporating 2%–6%PDMS or 5%–15%SMS can make the concrete hydrophobic,with water absorption and chloride transport rates decreasing by up to 94.3%.We also analyze the bonding modes of organic molecules and geopolymer gels,as well as their evolution mechanisms during dry-wet cycles.PDMS-modified geopolymer concrete is found to exhibit long-term waterproof performance that is not weakened by dry-wet cycles.This is attributed to the robust combination of organic components and the geopolymer gel skeleton formed through phase cross-linking.Meanwhile,PDMS-modified geopolymer concrete’s hydrophobicity,strength,and microstructure are essentially unaffected.In contrast,SMS-modified geopolymer concrete shows higher water sensitivity,although it does maintain efficient waterproof performance.Due to relatively low binding energy,the dry-wet cycles may lead to the detachment of some SMS molecules from the gel network,which results in a decrease of 18.6%in compressive strength and an increase of 37.6%in total porosity.This work confirms the utility of hydrophobically-modified geopolymer concrete as a building material for long-term service in wet environments,for instance,areas with frequent precipitation,or splash and tidal zones.展开更多
The formation of segregated structure has been demonstrated as an effective strategy for achieving ex-ceptional electromagnetic interference(EMI)shielding performance at low filler loadings.However,the acquisition of ...The formation of segregated structure has been demonstrated as an effective strategy for achieving ex-ceptional electromagnetic interference(EMI)shielding performance at low filler loadings.However,the acquisition of polymer particles and the formation of interactions with conductive fillers remain signifi-cant challenges for polydimethylsiloxane,which are crucial to the construction of a segregated structure.In this work,MXene sheets were functionalized and assembled onto the surface of polydimethylsilox-ane microspheres via hydrophobic interaction.Subsequently,functionalized MXene/polydimethylsiloxane(FMP)composites with a segregated structure were fabricated by filtration and hot-pressing.The FMP composite containing 8.22 wt.%MXene exhibited a high electrical conductivity of 99.4 S m^(−1)and a sat-isfactory EMI shielding effectiveness/thickness(EMI SE/d)of 31.3 dB mm^(−1).Furthermore,the FMP com-posite demonstrated excellent reliability with over 90%retention of EMI shielding effectiveness under harsh environments such as ultra-high/low temperatures and acidic/alkaline solutions.Additionally,the photothermal conversion performance of FMP composites and the capacitive sensing performance of the sensor based on FMP composites indicated their potential for managing body temperature and moni-toring human movement.Consequently,FMP composites show great promise in wearable electronics for effective electromagnetic interference shielding,thermal management and capacitive sensing.展开更多
Wood,recognized as a renewable and environmentally sustainable material,plays a crucial role as an alternative energy resource within the construction industry.However,it is highly susceptible to mold and decay fungi,...Wood,recognized as a renewable and environmentally sustainable material,plays a crucial role as an alternative energy resource within the construction industry.However,it is highly susceptible to mold and decay fungi,which can lead to surface discoloration and potentially compromise the structural integrity of wood.The advancement of nanotechnology has introduced innovative strategies for wood protection,enhancing its performance while imparting additional properties.Various approaches including nanosized metals,polymer nanocomposite and coating treatments are actively being explored in this field.Furthermore,integrating bio-based materials with nanotechnology offers a green and sustainable method for wood preservation.This paper provides an analysis,discussion,and synthesis of the applications of nanotechnology in wood protection along with its antifungal mechanisms,thereby contributing novel insights into the research landscape surrounding this topic.展开更多
An innovative strategy was proposed by integration of membrane contactor(MC)with biphasic solvent for efficient CO_(2) capture from flue gas.The accessible fly ash-based ceramic membrane(CM)underwent hydrophobic modif...An innovative strategy was proposed by integration of membrane contactor(MC)with biphasic solvent for efficient CO_(2) capture from flue gas.The accessible fly ash-based ceramic membrane(CM)underwent hydrophobic modification through silane grafting,followed by fluoroalkylsilane decoration,to prepare the superhydrophobic membrane(CSCM).The CSCM significantly improved resistance to wetting by the biphasic solvent,consisting of amine(DETA)and sulfolane(TMS).Morphological characterizations and chemical analysis revealed the notable enhancements in pore structure and hydrophobic chemical groups for the modified membrane.Predictions of wetting/bubbling behavior based on static wetting theory referred the liquid entry pressure(LEP)of CSCM increased by 20 kPa compared to pristine CM.Compared with traditional amine solvents,the biphasic solvent presented the expected phase separation.Performance experiments demonstrated that the CO_(2) capture efficiency of the biphasic solvent increased by 7%,and the electrical energy required for desorption decreased by 32%.The 60-h continuous testing and supplemental characterization of used membrane confirmed the excellent adaptability and durability of the CSCMs.This study provides a potential approach for accessing hydrophobic ceramic membranes and biphasic solvents for industrial CO_(2) capture.展开更多
As the global exploration and development of oil and gas resources advances into deep formations,the harsh conditions of high temperature and high salinity present significant challenges for drilling fluids.In order t...As the global exploration and development of oil and gas resources advances into deep formations,the harsh conditions of high temperature and high salinity present significant challenges for drilling fluids.In order to address the technical difficulties associated with the failure of filtrate loss reducers under high-temperature and high-salinity conditions.In this study,a hydrophobic zwitterionic filtrate loss reducer(PDA)was synthesized based on N,N-dimethylacrylamide(DMAA),2-acrylamido-2-methylpropane sulfonic acid(AMPS),diallyl dimethyl ammonium chloride(DMDAAC),styrene(ST)and a specialty vinyl monomer(A1).When the concentration of PDA was 3%,the FLAPI of PDA-WBDF was 9.8 mL and the FLHTHP(180℃,3.5 MPa)was 37.8 mL after aging at 240℃for 16 h.In the saturated NaCl environment,the FLAPI of PDA-SWBDF was 4.0 mL and the FLHTHP(180℃,3.5 MPa)was 32.0 mL after aging at 220℃ for 16 h.Under high-temperature and high-salinity conditions,the combined effect of anti-polyelectrolyte and hydrophobic association allowed PDA to adsorb on the bentonite surface tightly.The sulfonic acid groups of PDA increased the negative electronegativity and the hydration film thickness on bentonite surface,which enhanced the colloidal stability,maintained the flattened lamellar structure of bentonite and formed an appropriate particle size distribution,resulting in the formation of dense mud cakes and reducing the filtration loss effectively.展开更多
The electrochemical nitrogen reduction reaction(NRR)under ambient conditions presents a promising approach for the eco-friendly and sustainable synthesis of ammonia,with a continuous emergence of potential electrocata...The electrochemical nitrogen reduction reaction(NRR)under ambient conditions presents a promising approach for the eco-friendly and sustainable synthesis of ammonia,with a continuous emergence of potential electrocatalysts.However,the low solubility and limited diffusion of N_(2)significantly hinder the achievement of satisfactory performance.In this context,we report an effective strategy to enhance NRR activity by introducing a metal-organic framework(MOF)membrane,specifically MIL-53(Al),onto a perovskite oxide(LiNbO_(3)),denoted as LN@MIL-X(X=0.2,0.4 and 0.6).The MIL-53(Al)membrane selectively recognizes and concentrates N_(2)at the catalyst interface while simultaneously repelling water molecules,thereby inhibiting the hydrogen evolution reaction(HER).This ultrathin nanostructure significantly improves the NRR performance of LN@MIL-X compared to pristine LiNbO_(3).Notably,LN@MIL-0.4 exhibits a maximum NH_(3)yield of 45.25 mg h^(-1)mg_(cat.)^(-1)with an impressive Faradaic efficiency(FE)of 86.41%at-0.45 V versus RHE in 0.1 mol L^(-1)Na_(2)SO_(4).This work provides a universal strategy for the design and synthesis of perovskite oxide electrocatalysts,facilitating high-efficiency ammonia synthesis.展开更多
Stretchability is a crucial property of flexible all-in-one supercapacitors.This work reports a novel hydrogel electrolyte,polyacrylamidedivinylbenzene-Li2SO4(PAM-DVB-Li)synthesized by using a strategy of combining hy...Stretchability is a crucial property of flexible all-in-one supercapacitors.This work reports a novel hydrogel electrolyte,polyacrylamidedivinylbenzene-Li2SO4(PAM-DVB-Li)synthesized by using a strategy of combining hydrophobic nodes and hydrophilic networks as well as a method of dispersing hydrophobic DVB crosslinker to acrylamide monomer/Li2SO4 aqueous solution by micelles and followedγ-radiation induced polymerization and crosslinking.The resultant PAM-DVB-Li hydrogel electrolyte possesses excellent mechanical properties with 5627±241%stretchability and high ionic conductivity of 53±3 mS cm^(-1).By in situ polymerization of conducting polyaniline(PANI)on the PAM-DVB-Li hydrogel electrolyte,a novel all-in-one supercapacitor,PAM-DVB-Li/PANI,with highly integrated structure is prepared further.Benefiting from the excellent properties of hydrogel electrolyte and the all-in-one structure,the device exhibits a high specific capacitance of 469 mF cm^(-2) at 0.5 mA cm^(-2),good cyclic stability,safety,and deformation damage resistance.More importantly,the device demonstrates a superior tensile resistance(working normally under no more than 300%strain,capacitance stability in 1000 cycles of 1000%stretching and 10 cycles of 3000%stretching)far beyond that of other all-in-one supercapacitors.This work proposes a novel strategy to construct tensile-resistant all-in-one flexible supercapacitors that can be used as an energy storage device for stretchable electronic devices.展开更多
In this study,femtosecond pulsed laser processing was applied to the magnesium alloy,followed by in situ growth of Mg-Al layered double hydroxides(LDHs),and finally modification with low surface energy materials to pr...In this study,femtosecond pulsed laser processing was applied to the magnesium alloy,followed by in situ growth of Mg-Al layered double hydroxides(LDHs),and finally modification with low surface energy materials to prepare a biomimetic of centipede-like superhydrophobic composite coating.The resulting biomimetic coating features a dual-scale structure,comprising a micron-scale laser-etched array and nano-scale LDH sheets,which together create a complex hierarchical architecture.The multistage bionic superhydrophobic coating exhibits exceptional corrosion resistance,with a reduction in corrosion current density by approximately five orders of magnitude compared to the bare magnesium alloy substrate.This remarkable corrosion resistance is attributed to the synergistic effects of the superhydrophobicity with a contact angle(CA)of 154.60°,the densification of the surface LDH nanosheets,and the NO_(3)^(-) exchange capacity.Additionally,compared to untreated AZ91D alloy,the biomimetic coating prolongs ice formation time by 250% at-40℃ and withstands multiple cycles of sandpaper abrasion and repeated tape peeling tests.Furthermore,it demonstrates excellent self-cleaning and anti-fouling properties,as confirmed by dye immersion and dust contamination tests.The construction of the multi-level bionic structured coating not only holds significant practical potential for metal protection but also provides valuable insights into the application of formed LDH materials in functional bionic coating engineering.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52372093 and 52102145)the Key R&D Program of Shaanxi Province(Nos.2023GXLH-045 and 2022SF-168)+4 种基金the Xi’an Programs for Science and Technology Plan(Nos.2020KJRC0090 and 21XJZZ0045)the Opening Project of Shanxi Key Laboratory of Advanced Manufacturing Technology(No.XJZZ202001)the Xi’an Municipal Bureau of Science and Technology(No.21XJZZ0054)the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,Shaanxi University of Science and Technology(No.KFKT2021-01)the Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(No.KFKT2021-01).
文摘Melamine sponge is a major concern for oil-water separation due to its lightweight,high porosity(>99%),cost-effectiveness,impressive mechanical properties,and chemical/thermal stability.However,its amphiphilic nature hinders selective oil absorption in water.Recent strategies to enhance hydrophobicity are reviewed,including synthetic methods and materials,with comprehensive explanations of the mechanisms driven by surface energy and roughness.Key performance indicators for MS in oil-water separation,including adsorption capacity,wettability,stability,emulsion separation,reversible wettability switching,flame retardancy,mechanical properties,and recyclability,are thoroughly discussed.In conclusion,this review provides insights into the future potential and direction of functional melamine sponges in oil-water separation.
基金supported by grants from the National Research Foundation of Korea(NRF)under grant No.RS-2022-00155422 and No.2021R1C1C102014。
文摘Water often presents significant challenges in catalysts by deactivating active sites,poisoning the reaction,and even degrading composite structure.These challenges are amplified when the water participates as a reactant and is fed as a liquid phase,such as trickle bed-type reactors in a hydrogen-water isotope exchange(HIE)reaction.The key balance in such multiphase reactions is the precise control of catalyst design to repel bulk liquid water while diffusing water vapor.Herein,a platinum-incorporated metal-organic framework(MIL-101)based bifunctional hydrophobic catalyst functionalized with long alkyl chains(C_(12),dodecylamine)and further manufactured with poly(vinylidene fluoride),Pt@MIL-101-12/PVDF,has been developed which can show dramatically improved catalytic activity under multi-phase reactions involving hydrogen gas and liquid water.Pt@MIL-101-12/PVDF demonstrates enhanced macroscopic water-blocking properties,with a notable reduction of over 65%in water adsorption capacity and newly introduced liquid water repellency.while exhibiting a negligible increase in mass transfer resistance,i.e.,bifunctional hydrophobicity.Excellent catalytic activity,evaluated via HIE reaction,and its durability underscore the impact of bifunctional hydrophobicity.In situ DRIFTS analysis elucidates water adsorption/desorption dynamics within the catalyst composite,highlighting reinforced water diffusion at the microscopic level,affirming the catalyst's bifunctionality in different length scales.With demonstrated radiation resistance,Pt@MIL-101-12/PVDF emerges as a promising candidate for isotope exchange reactions.
基金Zhejiang Provincial Cooperative Forestry Science and Technology Project(No.2023SY05)Zhejiang Provincial Science and Technology Project(No.2024F1065-2).
文摘Herein,the surface of Moso bamboo was hydrophobically modified by combining O_(2)/N_(2)plasma treatments with polydimethylsiloxane(PDMS)solution treatment as the hydrophobic solution.The effects of plasma treatment process(power and time),PDMS solution concentration,and maceration time on the hydrophobic performance of bamboo specimens were studied,and the optimal treatment conditions for improving the hydrophobicity were determined.Scanning electron microscopy(SEM),fourier transform infrared(FTIR),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)were used to analyze the surface morphology,chemical structure,and functional groups in the specimens before and after the plasma and PDMS solution treatments under optimal conditions.Response surface analysis was also performed to determine the optimal treatment conditions.Results show that the hydrophobic performance of the Moso bamboo surface is effectively improved and the surface energy is reduced after the coordinated treatment.The optimal conditions for improving the hydrophobic performance of Moso bamboo surface are a treatment power of 800 W,treatment time of 15 s,O_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for O_(2)plasma treatment and a treatment power of 1000 W,treatment time of 15 s,N_(2)flow rate of 1.5 L/min,PDMS solution concentration of 5%,and maceration time of 60 min for N_(2)plasma treatment.After treatment,silicone oil particles and plasma etching traces are observed on the bamboo surface.Moreover,Si-O bonds in the PDMS solution are grafted to the bamboo surface via covalent bonds,thereby increasing the contact angle and decreasing the surface energy to achieve the hydrophobic effect.
基金National Key R&D Program of China(2023YFA1507902,2021YFA1500804)the National Natural Science Foundation of China(22121004,22038009,22250008)+2 种基金the Haihe Laboratory of Sustainable Chemical Transformations(CYZC202107)the Program of Introducing Talents of Discipline to Universities,China(No.BP0618007)the Xplorer Prize,China,for their financial support。
文摘CO_(2)reduction reaction(CO_(2)RR)electrolyzers based on gas diffusion electrode(GDE)enable the direct mass transfer of CO_(2)to the catalyst surface for participation in the reaction,thereby establishing an efficient three-phase reaction interface that significantly enhances current density.However,current hydrophobic modification methods face difficulties in achieving precise and substantial control over wettability,and the hydrophobic modifiers tend to significantly impair the conductivity of the electrode and ion transport capabilities.This study employs Nafion ionomers to hydrophobically modify the threedimensional catalyst layer,revealing the bifunctionality of Nafion.The fluorinated backbone of Nafion ensures the hydrophobicity of the entire catalyst layer,while its sulfonic acid groups promote ion transport,without significantly affecting the conductivity of the electrode.Furthermore,by employing modifiers with distinct wettability characteristics,a highly efficient and large-scale manipulation of the hydrophilic/hydrophobic properties of the catalyst layer was successfully realized.The electrode,constructed with silver nanopowder as a representative catalyst and modified with the hydrophobic ionomer Nafion,exhibits a substantial enhancement in both catalytic activity and durability.The optimized electrode exhibited exceptional electrocatalytic performance in both flow cell and membrane electrode assembly(MEA)configurations.Notably,in the MEA,the electrode achieved a remarkable CO Faradaic efficiency(FE)of 93.3%at a total current density of 200 mA cm^(-2),while maintaining stable operation for over 62 h.
基金supported by the Key Research and Development Program of Sichuan Province(Grant No.2023ZHCG0050)the Fundamental Research Funds for the Central Universities of China(Grant No.2682024QZ006 and 2682024ZTPY042)the Analytic and Testing Center of Southwest Jiaotong University.
文摘As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields.
基金supported by a National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT(2021R1A2C1014294,2022R1A2C3003319)the BK21 FOUR(Fostering Outstanding Universities for Research)through the National Research Foundation(NRF)of Korea.
文摘A critical challenge hindering the practical application of lithium–oxygen batteries(LOBs)is the inevitable problems associated with liquid electrolytes,such as evaporation and safety problems.Our study addresses these problems by proposing a modified polyrotaxane(mPR)-based solid polymer electrolyte(SPE)design that simultaneously mitigates solvent-related problems and improves conductivity.mPR-SPE exhibits high ion conductivity(2.8×10^(−3)S cm^(−1)at 25℃)through aligned ion conduction pathways and provides electrode protection ability through hydrophobic chain dispersion.Integrating this mPR-SPE into solid-state LOBs resulted in stable potentials over 300 cycles.In situ Raman spectroscopy reveals the presence of an LiO_(2)intermediate alongside Li_(2)O_(2)during oxygen reactions.Ex situ X-ray diffraction confirm the ability of the SPE to hinder the permeation of oxygen and moisture,as demonstrated by the air permeability tests.The present study suggests that maintaining a low residual solvent while achieving high ionic conductivity is crucial for restricting the sub-reactions of solid-state LOBs.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31972405).
文摘Plants possess a hydrophobic layer of wax on their aerial surface,consisting mainly of amorphous intra-cuticular wax and epicuticular wax crystals(Kunst and Samuels,2003).This waxy coating contains a wide variety of very-long-chain fatty acids(VLCFAs)and their derivatives,including alkanes,alcohols,aldehydes,esters,and ketones.
基金supported by the National Key Research and Development Program of China(2022YFB3805100)the National Natural Science Foundation of China(22278105,21978062).
文摘Two dimensional(2D)membranes show huge potential for ion sieving applications owing to their regular sub-nanometer channels.How to engineer the channel micro-chemistry to pursue higher ion selectivity while maintaining promising ion transports remains challenging.In this work,we propose building rigidly confined charged 2D graphene oxide(GO)channels and manipulating their hydrophilicity via self-designed poly(ionic liquid)s(PILs)intercalation.The imidazolium cations on the PILs backbone not only stabilize the GO interlayer channels via non-covalent interactions but also create a positively charged environment for attracting anions entering into channels.The hydrophilicity variations of the side chains on the PILs help with realizing the regulation of the channel hydrophilicity.Under the electrodialysis mode,the GO membrane with the strongest hydrophobicity yields an impressive selectivity of 172.2 for Cl^(-)and SO_(4)^(2-),which is 48 times of Neosepta ACS,a commercial membrane specialized for anion separation.This work offers a brand-new route in exploring high-performance ion selective membranes.
基金the National Natural Science Foundation of China(Nos.22278415 and 52225309)Chinese Academy of Sciences(No.027GJHZ2022033GC).
文摘Environmentally friendly slow-release fertilizers are highly desired in sustainable agriculture.Encapsulating fertilizers can routinely achieve controlled releasing performances but suffers from short-term effectiveness or environmental unfriendliness.In this work,a bio-derived shellac incorporated with polydodecyl trimethoxysilane(SL-PDTMS)capsule was developed for long-term controlled releasing urea.Due to enhanced hydrophobicity and thus water resistance,the SL-PDTMS encapsulated urea fertilizer(SPEU)demonstrated a long-term effectiveness of 60 d,compared with SL encapsulated urea fertilizer(SEU,30 d)and pure urea fertilizer(U,5 min).In addition,SPEU showed a broad pH tolerance from 5.0 to 9.0,covering most various soil pH conditions.In the pot experiments,promoted growth of maize seedlings was observed after applying SPEU,rendering it promising as a high-performance controlled-released fertilizer.
基金supported by the National Natural Science Foundation of China(U2130204)the Joint Funds of the National Key R&D Program of China(2022YFB2502102)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(YESS20200364)the Beijing Outstanding Young Scientists Program(BJJWZYJH01201910007023)。
文摘Aqueous zinc-ion batteries(AZIBs)are pivotal for achieving net-zero goals,yet their commercialization is impeded by zinc dendrites,parasitic reactions,and interfacial instability.Current debates persist on the interplay between zincophilic-hydrophilic and zincophobic-hydrophobic interactions at the anode-electrolyte interface.Herein,a conceptual framework that decouples these competing effects was proposed,enabling the rational design of a dual-layer architecture with an inner zincophilic layer for Zn^(2+)flux homogenization and an outer hydrophobic layer for water shielding.Through in situ and ex situ analyses,the synergistic mechanism was elucidated.During the cycling process,the zincophilic interface guides uniform Zn deposition,while the hydrophobic coating suppresses H_(2)O-induced side reactions.This dual modification achieves a Zn||Cu cell with an unprecedented 99.89%Coulombic efficiency and 975-cycle stability.This work resolves the long-standing controversy over interfacial affinity design,offering a scalable and industrially viable strategy to enhance AZIBs’durability without sacrificing energy density.
基金supported by the Natural Science Foundation of Shandong Province(ZR2021MB135)the Major Scientific and Technological Innovation Project of Shandong Province(2021ZDSYS13).
文摘Cu(I)based CO adsorbents are prone to oxidation and deactivation owing to the sensitivity of Cu^(+) ions to oxygen and moisture in the humid air.In this study,in order to improve its antioxidant performance,hydrophobic Cu(I)based adsorbents were fabricated using polytetrafluoroethylene(PTFE)for the hydrophobic modification,effectively avoiding the contact of CuCl active species with moisture,thereby inhibiting the oxidation of the Cu(I)based adsorbents.The successful introduction of PTFE into the activated carbon(AC)carrier significantly improves the hydrophobicity of the adsorbent.The optimal adsorbent CuCl(6)@AC-PTFE(0.10%)with the CuCl loading of 6 mmol·g^(-1)and the PTFE mass concentration of 0.10%exhibits an excellent CO adsorption capacity of 3.61 mmol·g^(-1)(303 K,500 kPa)as well as high CO/CO_(2)and CO/N_(2)adsorption selectivities of 29 and 203(303 K,100 kPa).Particularly,compared with the unmodified adsorbents,the antioxidant performance of modified adsorbent CuCl(6)@AC-PTFE(0.10%)is significantly improved,holding 86%of CO adsorption performance of fresh one after 24 h of exposure to humid air with a relative humidity of 70%,making the fabricated composite a promising adsorbent for CO separation.
基金Project(2025JJ70532)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(21862009,21563016)supported by the National Natural Science Foundation of ChinaProject(2022GX020)supported by the Taian Science and Technology Innovation Development Project,China。
文摘Polydimethylsiloxane(PDMS)is considered a low surface energy material widely used in(super)hydrophobic modification.In this paper,the high hydrophobic melamine sponges(MS)were modified with commercial aminopropyl functionalized polydimethylsiloxane(NH_(2)-PDMS)with different molecular mass.The chemical composition,surface morphology,and wettability of the NH_(2)-PDMS-modified MS were investigated by X-ray photoelectron spectroscopy(XPS),attenuated total reflection Fourier transform infrared spectroscopy(ATR-FTIR)and contact angle test.Owing to the porous structure and high hydrophobicity,NH_(2)-PDMS-modified MS possesses remarkable absorption capacity(ranging from 46 to 155 times their own mass).Simultaneously,it can effectively separate oil-water mixtures with high separation efficiencies exceeding 98.2%.NH_(2)-PDMS-modified MS has no obvious change after 10 cycles of oil-water separation.The results demonstrate PDMS molecular mass on surface can revise material properties and achieve high separation efficiencies in oil-water separation.
基金supported by the National Natural Science Foundation of China(Nos.52101328 and 52171277)the National Key Research and Development Program of China(No.2022YFE0109200)+1 种基金the Foundation of the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SZ-TD006)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZB20230653)。
文摘The waterproof performance,mechanical properties,chemical composition,microstructure,and pore structure of hydrophobically-modified geopolymer concrete are investigated before and after dry-wet cycles,to determine the long-term feasibility of using hydrophobically-modified geopolymer concrete in wet environments.We use two types of organic modifying agents:polydimethylsiloxane(PDMS)and sodium methyl siliconate(SMS).The experimental results show that incorporating 2%–6%PDMS or 5%–15%SMS can make the concrete hydrophobic,with water absorption and chloride transport rates decreasing by up to 94.3%.We also analyze the bonding modes of organic molecules and geopolymer gels,as well as their evolution mechanisms during dry-wet cycles.PDMS-modified geopolymer concrete is found to exhibit long-term waterproof performance that is not weakened by dry-wet cycles.This is attributed to the robust combination of organic components and the geopolymer gel skeleton formed through phase cross-linking.Meanwhile,PDMS-modified geopolymer concrete’s hydrophobicity,strength,and microstructure are essentially unaffected.In contrast,SMS-modified geopolymer concrete shows higher water sensitivity,although it does maintain efficient waterproof performance.Due to relatively low binding energy,the dry-wet cycles may lead to the detachment of some SMS molecules from the gel network,which results in a decrease of 18.6%in compressive strength and an increase of 37.6%in total porosity.This work confirms the utility of hydrophobically-modified geopolymer concrete as a building material for long-term service in wet environments,for instance,areas with frequent precipitation,or splash and tidal zones.
基金supported by the Fundamental Research Funds for the Central Universities(No.D5000220252)the funds for Ministry of Industry and Information Technology(No.MJZ44N22)Shaanxi Undergraduate Training Program for Innovation and Entrepreneurship(No.S202310699509).
文摘The formation of segregated structure has been demonstrated as an effective strategy for achieving ex-ceptional electromagnetic interference(EMI)shielding performance at low filler loadings.However,the acquisition of polymer particles and the formation of interactions with conductive fillers remain signifi-cant challenges for polydimethylsiloxane,which are crucial to the construction of a segregated structure.In this work,MXene sheets were functionalized and assembled onto the surface of polydimethylsilox-ane microspheres via hydrophobic interaction.Subsequently,functionalized MXene/polydimethylsiloxane(FMP)composites with a segregated structure were fabricated by filtration and hot-pressing.The FMP composite containing 8.22 wt.%MXene exhibited a high electrical conductivity of 99.4 S m^(−1)and a sat-isfactory EMI shielding effectiveness/thickness(EMI SE/d)of 31.3 dB mm^(−1).Furthermore,the FMP com-posite demonstrated excellent reliability with over 90%retention of EMI shielding effectiveness under harsh environments such as ultra-high/low temperatures and acidic/alkaline solutions.Additionally,the photothermal conversion performance of FMP composites and the capacitive sensing performance of the sensor based on FMP composites indicated their potential for managing body temperature and moni-toring human movement.Consequently,FMP composites show great promise in wearable electronics for effective electromagnetic interference shielding,thermal management and capacitive sensing.
基金sponsored by Key Lab.of Biomass Energy and Material,Jiangsu Province(JSBEM-S-202305)Guangdong Academy of Forestry(2022-GDFS-KJ-03).
文摘Wood,recognized as a renewable and environmentally sustainable material,plays a crucial role as an alternative energy resource within the construction industry.However,it is highly susceptible to mold and decay fungi,which can lead to surface discoloration and potentially compromise the structural integrity of wood.The advancement of nanotechnology has introduced innovative strategies for wood protection,enhancing its performance while imparting additional properties.Various approaches including nanosized metals,polymer nanocomposite and coating treatments are actively being explored in this field.Furthermore,integrating bio-based materials with nanotechnology offers a green and sustainable method for wood preservation.This paper provides an analysis,discussion,and synthesis of the applications of nanotechnology in wood protection along with its antifungal mechanisms,thereby contributing novel insights into the research landscape surrounding this topic.
基金supported by the National Key R&D Program of China(2023YFF0614301,2023YFC3707004,and 2018YFB0604302)Fundamental Research Funds for the Central Universities(No.2022MS041)+1 种基金National Natural Science Foundation of China(No.22106084)Tsinghua University Initiative Scientific Research Program(2023Z02JMP001).
文摘An innovative strategy was proposed by integration of membrane contactor(MC)with biphasic solvent for efficient CO_(2) capture from flue gas.The accessible fly ash-based ceramic membrane(CM)underwent hydrophobic modification through silane grafting,followed by fluoroalkylsilane decoration,to prepare the superhydrophobic membrane(CSCM).The CSCM significantly improved resistance to wetting by the biphasic solvent,consisting of amine(DETA)and sulfolane(TMS).Morphological characterizations and chemical analysis revealed the notable enhancements in pore structure and hydrophobic chemical groups for the modified membrane.Predictions of wetting/bubbling behavior based on static wetting theory referred the liquid entry pressure(LEP)of CSCM increased by 20 kPa compared to pristine CM.Compared with traditional amine solvents,the biphasic solvent presented the expected phase separation.Performance experiments demonstrated that the CO_(2) capture efficiency of the biphasic solvent increased by 7%,and the electrical energy required for desorption decreased by 32%.The 60-h continuous testing and supplemental characterization of used membrane confirmed the excellent adaptability and durability of the CSCMs.This study provides a potential approach for accessing hydrophobic ceramic membranes and biphasic solvents for industrial CO_(2) capture.
基金supported by State Key Laboratory of Deep Oil and Gas(No.SKLDOG2024-ZYRC-03)supported by the Excellent Young Scientists Fund of the National Natural Science Foundation of China(No.52322401)the National Natural Science Foundation of China(52288101).
文摘As the global exploration and development of oil and gas resources advances into deep formations,the harsh conditions of high temperature and high salinity present significant challenges for drilling fluids.In order to address the technical difficulties associated with the failure of filtrate loss reducers under high-temperature and high-salinity conditions.In this study,a hydrophobic zwitterionic filtrate loss reducer(PDA)was synthesized based on N,N-dimethylacrylamide(DMAA),2-acrylamido-2-methylpropane sulfonic acid(AMPS),diallyl dimethyl ammonium chloride(DMDAAC),styrene(ST)and a specialty vinyl monomer(A1).When the concentration of PDA was 3%,the FLAPI of PDA-WBDF was 9.8 mL and the FLHTHP(180℃,3.5 MPa)was 37.8 mL after aging at 240℃for 16 h.In the saturated NaCl environment,the FLAPI of PDA-SWBDF was 4.0 mL and the FLHTHP(180℃,3.5 MPa)was 32.0 mL after aging at 220℃ for 16 h.Under high-temperature and high-salinity conditions,the combined effect of anti-polyelectrolyte and hydrophobic association allowed PDA to adsorb on the bentonite surface tightly.The sulfonic acid groups of PDA increased the negative electronegativity and the hydration film thickness on bentonite surface,which enhanced the colloidal stability,maintained the flattened lamellar structure of bentonite and formed an appropriate particle size distribution,resulting in the formation of dense mud cakes and reducing the filtration loss effectively.
基金supported by the National Natural Science Foundation of China(No.U22A20418,22075196)the Research Project Supported by Shanxi Scholarship Council of China(2022–050).
文摘The electrochemical nitrogen reduction reaction(NRR)under ambient conditions presents a promising approach for the eco-friendly and sustainable synthesis of ammonia,with a continuous emergence of potential electrocatalysts.However,the low solubility and limited diffusion of N_(2)significantly hinder the achievement of satisfactory performance.In this context,we report an effective strategy to enhance NRR activity by introducing a metal-organic framework(MOF)membrane,specifically MIL-53(Al),onto a perovskite oxide(LiNbO_(3)),denoted as LN@MIL-X(X=0.2,0.4 and 0.6).The MIL-53(Al)membrane selectively recognizes and concentrates N_(2)at the catalyst interface while simultaneously repelling water molecules,thereby inhibiting the hydrogen evolution reaction(HER).This ultrathin nanostructure significantly improves the NRR performance of LN@MIL-X compared to pristine LiNbO_(3).Notably,LN@MIL-0.4 exhibits a maximum NH_(3)yield of 45.25 mg h^(-1)mg_(cat.)^(-1)with an impressive Faradaic efficiency(FE)of 86.41%at-0.45 V versus RHE in 0.1 mol L^(-1)Na_(2)SO_(4).This work provides a universal strategy for the design and synthesis of perovskite oxide electrocatalysts,facilitating high-efficiency ammonia synthesis.
基金financial support from National Natural Science Foundation of China(No.12375336,11875078)。
文摘Stretchability is a crucial property of flexible all-in-one supercapacitors.This work reports a novel hydrogel electrolyte,polyacrylamidedivinylbenzene-Li2SO4(PAM-DVB-Li)synthesized by using a strategy of combining hydrophobic nodes and hydrophilic networks as well as a method of dispersing hydrophobic DVB crosslinker to acrylamide monomer/Li2SO4 aqueous solution by micelles and followedγ-radiation induced polymerization and crosslinking.The resultant PAM-DVB-Li hydrogel electrolyte possesses excellent mechanical properties with 5627±241%stretchability and high ionic conductivity of 53±3 mS cm^(-1).By in situ polymerization of conducting polyaniline(PANI)on the PAM-DVB-Li hydrogel electrolyte,a novel all-in-one supercapacitor,PAM-DVB-Li/PANI,with highly integrated structure is prepared further.Benefiting from the excellent properties of hydrogel electrolyte and the all-in-one structure,the device exhibits a high specific capacitance of 469 mF cm^(-2) at 0.5 mA cm^(-2),good cyclic stability,safety,and deformation damage resistance.More importantly,the device demonstrates a superior tensile resistance(working normally under no more than 300%strain,capacitance stability in 1000 cycles of 1000%stretching and 10 cycles of 3000%stretching)far beyond that of other all-in-one supercapacitors.This work proposes a novel strategy to construct tensile-resistant all-in-one flexible supercapacitors that can be used as an energy storage device for stretchable electronic devices.
基金supported by the National Natural Science Foundation of China(No.52331004,U2106216)the Natural Science Foundation of Shandong Province(No.ZR2022ZD12)+2 种基金the Key R&D Program of Shandong Province,China(2023ZLGX05,2023CXGC010406)Key Program of Natural Science Foundation of Shandong Province of China(No.ZR2022ZD12,ZR2024ZD14)the Taishan Scholarship of Climbing Plan(No.tspd20230603)。
文摘In this study,femtosecond pulsed laser processing was applied to the magnesium alloy,followed by in situ growth of Mg-Al layered double hydroxides(LDHs),and finally modification with low surface energy materials to prepare a biomimetic of centipede-like superhydrophobic composite coating.The resulting biomimetic coating features a dual-scale structure,comprising a micron-scale laser-etched array and nano-scale LDH sheets,which together create a complex hierarchical architecture.The multistage bionic superhydrophobic coating exhibits exceptional corrosion resistance,with a reduction in corrosion current density by approximately five orders of magnitude compared to the bare magnesium alloy substrate.This remarkable corrosion resistance is attributed to the synergistic effects of the superhydrophobicity with a contact angle(CA)of 154.60°,the densification of the surface LDH nanosheets,and the NO_(3)^(-) exchange capacity.Additionally,compared to untreated AZ91D alloy,the biomimetic coating prolongs ice formation time by 250% at-40℃ and withstands multiple cycles of sandpaper abrasion and repeated tape peeling tests.Furthermore,it demonstrates excellent self-cleaning and anti-fouling properties,as confirmed by dye immersion and dust contamination tests.The construction of the multi-level bionic structured coating not only holds significant practical potential for metal protection but also provides valuable insights into the application of formed LDH materials in functional bionic coating engineering.