Studying runoff characteristics and quantifying human activities’impact on northern Shaanxi,a crucial mineral resource area in China,is crucial to alleviate water resource contradictions.In this study,hydrological el...Studying runoff characteristics and quantifying human activities’impact on northern Shaanxi,a crucial mineral resource area in China,is crucial to alleviate water resource contradictions.In this study,hydrological element trends were analyzed using theβ-z-h three-parameter indication method.The Mann-Kendall,Pettitt,moving T,and Yamamoto methods were used to test the mutation point of hydrological elements.The Budyko framework was used to quantitatively assess the impacts of climate change and multiple human activities on runoff reduction.The results showed that(1):Precipitation(PRE),potential evapotranspiration(E0),and temperature(TEM)showed increasing trends;runoff in the Huangfuchuan,Gushanchuan,Kuye River,Tuwei River,Wuding River,Qingjian River,and Yanhe River catchments showed decreasing trends(HFC,GSC,KYR,TWR,WDR,QJR,YR);whereas runoff in the Jialu River(JLR)catchment showed a“V-shaped”trend from 1980 to2020.(2)Runoff was positively correlated with PRE and negatively correlated with E0and the subsurface index(n),with the elasticity coefficients of PRE,E0,and n showing an increasing trend in the change period.(3)Human activities were a key factor in runoff reduction,although the impact of different human activities showed spatial variations.This study provides a scientific foundation for achieving the sustainable development of water resources in mining areas.展开更多
The current environmental flow assessment of Chinese rivers is thought to have three shortcomings: The first is that environmental flow requirements of reservoirs in dammed rivers are usually not explicitly considered...The current environmental flow assessment of Chinese rivers is thought to have three shortcomings: The first is that environmental flow requirements of reservoirs in dammed rivers are usually not explicitly considered; the second is that enough attentions have not been paid to the inherent links between flow regime and ecological processes; the third is that most studies focus on the variable range of merely one hydrological element such as discharge needed by riverine ecosystems. Here, first proposed is a holistic method for environmental flow assessment, the flow-ecological response relationship method that is suitable for large rivers with relatively abundant ecological data. Based on the conceptual models and quantitative relationships between flow and ecological response, this method comprehensively considers the ecological conservation requirements of both reservoir and its downstream reach. Then, it is applied to assessing the environmental flows of the Three Gorges Reservoir and its downstream reach by the following steps: 1) Construction of conceptual models of flow-ecological response; 2) identification of ecological targets of environmental flows and their key periods; 3) development of the quantitative relationships between hydrological indicators and ecological indictors; 4) preliminary assessment of environmental flow according to the tradeoff between ecological targets and water demands of human. The environmental flow hydrographs obtained have explicit ecological conservation targets, time schedule of achieving each target, and characteristics of multiple hydrological elements such as flow, water level, frequency, timing, duration and rate of change. The case study has tested the reasonability and feasibility of this method, and the results of this study are expected to provide technical support and decision reference for improving the operation of the Three Gorges-Gezhouba cascade reservoirs.展开更多
基金Department of Water Resources of Shaanxi Province of China,No.2023slkj-8National Natural Science Foundation of China,No.51779209。
文摘Studying runoff characteristics and quantifying human activities’impact on northern Shaanxi,a crucial mineral resource area in China,is crucial to alleviate water resource contradictions.In this study,hydrological element trends were analyzed using theβ-z-h three-parameter indication method.The Mann-Kendall,Pettitt,moving T,and Yamamoto methods were used to test the mutation point of hydrological elements.The Budyko framework was used to quantitatively assess the impacts of climate change and multiple human activities on runoff reduction.The results showed that(1):Precipitation(PRE),potential evapotranspiration(E0),and temperature(TEM)showed increasing trends;runoff in the Huangfuchuan,Gushanchuan,Kuye River,Tuwei River,Wuding River,Qingjian River,and Yanhe River catchments showed decreasing trends(HFC,GSC,KYR,TWR,WDR,QJR,YR);whereas runoff in the Jialu River(JLR)catchment showed a“V-shaped”trend from 1980 to2020.(2)Runoff was positively correlated with PRE and negatively correlated with E0and the subsurface index(n),with the elasticity coefficients of PRE,E0,and n showing an increasing trend in the change period.(3)Human activities were a key factor in runoff reduction,although the impact of different human activities showed spatial variations.This study provides a scientific foundation for achieving the sustainable development of water resources in mining areas.
基金supported by the Ministry of Science and Technology of China (Grant Nos. 2012BAC06B01, 2012BAC06B04)
文摘The current environmental flow assessment of Chinese rivers is thought to have three shortcomings: The first is that environmental flow requirements of reservoirs in dammed rivers are usually not explicitly considered; the second is that enough attentions have not been paid to the inherent links between flow regime and ecological processes; the third is that most studies focus on the variable range of merely one hydrological element such as discharge needed by riverine ecosystems. Here, first proposed is a holistic method for environmental flow assessment, the flow-ecological response relationship method that is suitable for large rivers with relatively abundant ecological data. Based on the conceptual models and quantitative relationships between flow and ecological response, this method comprehensively considers the ecological conservation requirements of both reservoir and its downstream reach. Then, it is applied to assessing the environmental flows of the Three Gorges Reservoir and its downstream reach by the following steps: 1) Construction of conceptual models of flow-ecological response; 2) identification of ecological targets of environmental flows and their key periods; 3) development of the quantitative relationships between hydrological indicators and ecological indictors; 4) preliminary assessment of environmental flow according to the tradeoff between ecological targets and water demands of human. The environmental flow hydrographs obtained have explicit ecological conservation targets, time schedule of achieving each target, and characteristics of multiple hydrological elements such as flow, water level, frequency, timing, duration and rate of change. The case study has tested the reasonability and feasibility of this method, and the results of this study are expected to provide technical support and decision reference for improving the operation of the Three Gorges-Gezhouba cascade reservoirs.