With the increase of the importance of geological exploration in China, the study of hydrogeology in modern engineering exploration status is more and more important. In recent years, with the emergence of energy shor...With the increase of the importance of geological exploration in China, the study of hydrogeology in modern engineering exploration status is more and more important. In recent years, with the emergence of energy shortage in China, nationwide attention to hydrogeological conditions is becoming more and more important. Under this condition, this paper analyzes the evaluation content of hydrogeological conditions in geological drilling construction, for reference only.展开更多
Groundwater is the main water supply source in the Tarim Basin in China.Endemic disease caused by high iodine(I)groundwater in the Tarim Basin was reported previously.Therefore,it is crucial to systematically identify...Groundwater is the main water supply source in the Tarim Basin in China.Endemic disease caused by high iodine(I)groundwater in the Tarim Basin was reported previously.Therefore,it is crucial to systematically identify the distribution and genesis of groundwater I.Based on hydrochemical analysis of 717 groundwater samples collected in 2015–2018,spatial distribution and hydrogeochemistry characteristic of high I groundwater in different aquifers were analyzed.Results showed that groundwater I ranged between<10.00 and 4000.00μg/L(mean of 53.71μg/L).High I groundwater(I>100.00μg/L)accounted for 7.25%of the total samples.Horizontally,groundwater I significantly increased from recharge zone(RZ)to transition zone(TZ)and to evaporation zone(EZ).Vertically,groundwater in shallow confined aquifer(SCA)had the greatest I concentration,followed by single-structure phreatic aquifer(SSPA),phreatic aquifer in confined groundwater area(PACGA),while groundwater in deep confined aquifer(DCA)generally had low I concentration.Groundwater I enrichment in SSPA was mainly affected by organic matter(OM)decomposition and that in SCA was mainly affected by evaporite mineral dissolution,OM decomposition under alkaline environment.While I enrichment in groundwater of PACGA was restrained under neutral environment.Lacustrine sedimentary environment was crucial for I enrichment in groundwater.Besides,fine-grained lithology of aquifer,smooth topographic slope,shallow buried depth of groundwater,weak alkaline and reducing environment,reductive dissolution of iron oxide/hydroxide minerals and OM decomposition were advantageous to I enrichment in groundwater.展开更多
Constructing impermeable curtains to contain contaminant in aquifers is a costly and complex process that can impact the structure integrity of aquifer systems.Are impermeable curtains necessary for a groundwater cont...Constructing impermeable curtains to contain contaminant in aquifers is a costly and complex process that can impact the structure integrity of aquifer systems.Are impermeable curtains necessary for a groundwater contaminant remediation project?This study evaluates the necessity of impermeable curtains for groundwater contaminant remediation projects.Specifically,it considers remediation efforts based on the Pump and Treat(PAT)technique under various hydrogeological conditions and contaminant properties,comparing the total remediation cost and effectiveness.To further investigate,a multi-objective simulation and optimization model,utilizing the Multi-Objective Fast Harmony Search(MOFHS)algorithm,was employed to identify optimal groundwater remediation system designs that without impermeable curtains.Both a two-dimensional(2-D)hypothetical example and a three-dimensional(3-D)field example were used to assess the necessity of constructing impermeable curtains.The 2-D hypothetical example demonstrated that the installation of impermeable curtain is justified only when the dispersivity(αL)of the contaminant reaches 100 meters.In most cases,particularly at sites with porosity(n)under 0.3,alternative,more cost-effective,and efficient remediation strategies may be available,making impermeable barriers unnecessary.The optimization results of the 3-D field example further corroborate the conclusions derived from the 2-D hypothetical example.These findings provide valuable guidance for more scientifically informed,reasonable,and cost-effective groundwater contaminant remediation projects.展开更多
Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotro...Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotropy and discontinuity of the karst water-bearing media in these areas. In this study, we used the Guang'an Longtan Coal mine in Sichuan as an example, and generalized the complex hydrogeological conditions in the reservoir area. A finite element numerical flow model was used to simulate current and future scenarios of roadway gushing at the bottom of the coal mine at pile number 1 + 700 m. The results show that the roadway section corresponding to valleys has a gushing quantity of 4323.8–4551.25 m^3/d before impoundment. Modeled water inflow after impoundment increased to 1.6 times the water inflow before impoundment, which threatens the impoundment as well as the roadway's normal operation. Therefore, roadway processing measures are needed to guarantee the safety of the impoundment and of the mining operation.展开更多
This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the l...This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the lagoon, which include factors such as size, depth, water quality, and ecosystem composition. Secondly, the influence of precipitation on the water volume in the lagoon will be examined. This analysis involves assessing historical rainfall patterns in the region, as well as the amount and frequency of precipitation during the 2021 flood event. Thirdly, the hydrogeologic and geologic conditions of the lagoon will be evaluated. This involves examining factors such as the type and structure of the soil and bedrock, the presence of aquifers or other underground water sources, and the movement of water through the surrounding landscape. Finally, the study seeks to assess the risk of future flooding in Tasi-Tolu Lagoon, based on the insights gained from the previous analyses. Overall, this study’s goal is to provide a comprehensive understanding of the hydrogeological factors that contribute to flooding in Tasi-Tolu Lagoon. This knowledge could be used to inform flood mitigation strategies or to improve our ability to predict and respond to future flooding events in the region.展开更多
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
The surface watershed and groundwater basin have fixed recharge scale,which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding ...The surface watershed and groundwater basin have fixed recharge scale,which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding eco-geological environment pattern.To accurately identify the boundary of the surface watershed and groundwater basin is the basis for properly understanding hydrologic cycle and conducting the water balance analysis at watershed scale in complicated geologic structure area,especially when the boundary are inconsistent.In this study,the Dalinuoer Lake located in the middle of the Inner Mongolian Plateau which has complicated geologic structure was selected as the representative case.Based on the multidisciplinary comprehensive analysis of topography,tectonics,hydrogeology,groundwater dynamics and stable isotopes,the results suggest the following:(1)The surface watershed ridge and groundwater basin divide of Dalinuoer Lake are inconsistent.The surface watershed was divided into two separate groundwater systems almost having no groundwater exchange by the SW-NE Haoluku Anticlinorium Fault which has obvious water-blocking effect.The surface drainage area of Dalinuoer Lake is 6139 km^(2).The northern regional A is the Dalinuoer Lake groundwater system with an area of 4838 km^(2),and the southern regional B is the Xilamulun Riverhead groundwater system with an area of 1301 km^(2).(2)The groundwater in the southern of regional A and the spring-feeding river are the important recharge sources for the Dalinuoer Lake,and it has greater recharge effects than the northern Gonggeer River system.(3)It is speculated that the trend of Haoluku Anticlinorium Fault is the boundary of the westerlies and the East Asian summer Monsoon(EASM)climate systems,which further pinpoints the predecessor’s understanding of this boundary line.At present,the Dalinuoer Lake watershed is proved to have gone through a prominent warming-drying trend periods,which leads to the precipitation reduction,temperature rise,human activities water usage increasement.So the hydrological cycle and lake eco-environment at watershed scale will still bound to be change,which may pose the potential deterioration risk on the suitability of fish habitat.The results can provide basic support for better understanding water balance evolution and lake area shrinkage cause as well as the ecological protection and restoration implementation of Dalinuoer Lake watershed.展开更多
By analysing the hydrogeological conditions of this region and the coal mines hereof, together with the water hazards troubled Shennan mine area in recent years, this paper summarized six types of mine water hazards. ...By analysing the hydrogeological conditions of this region and the coal mines hereof, together with the water hazards troubled Shennan mine area in recent years, this paper summarized six types of mine water hazards. As per the basic characteristics, geological distribution, threat degree and difficulty of prevention of various water hazards, along with the practice of water prevention in the mining area, this article proposed effective technical measures for the prevention and control of different water hazards and laid a solid foundation for the safe production in the mining area.展开更多
Discharge is one of the most important quantitative characteristics of springs.It not only specifies the yield of groundwater but also reflects the water retention conditions of the aquifer.An analysis of a long-term ...Discharge is one of the most important quantitative characteristics of springs.It not only specifies the yield of groundwater but also reflects the water retention conditions of the aquifer.An analysis of a long-term spring discharges enables linking them to hydrogeological and meteorological conditions of their catchment area as well as calculation of seasonal and multiannual variability parameters.The paper includes data on 84 springs in southern Poland collected in PIG-PIB databases.展开更多
文摘With the increase of the importance of geological exploration in China, the study of hydrogeology in modern engineering exploration status is more and more important. In recent years, with the emergence of energy shortage in China, nationwide attention to hydrogeological conditions is becoming more and more important. Under this condition, this paper analyzes the evaluation content of hydrogeological conditions in geological drilling construction, for reference only.
基金financially supported by the National Natural Science Foundation of China(Nos.42067035 and 42007161)Water Conservancy Engineering Key Discipline Project of Xinjiang Agricultural University(No.SLXK2019-10)the Opening Project of Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention in 2021(No.ZDSYS-JS-2021-10)。
文摘Groundwater is the main water supply source in the Tarim Basin in China.Endemic disease caused by high iodine(I)groundwater in the Tarim Basin was reported previously.Therefore,it is crucial to systematically identify the distribution and genesis of groundwater I.Based on hydrochemical analysis of 717 groundwater samples collected in 2015–2018,spatial distribution and hydrogeochemistry characteristic of high I groundwater in different aquifers were analyzed.Results showed that groundwater I ranged between<10.00 and 4000.00μg/L(mean of 53.71μg/L).High I groundwater(I>100.00μg/L)accounted for 7.25%of the total samples.Horizontally,groundwater I significantly increased from recharge zone(RZ)to transition zone(TZ)and to evaporation zone(EZ).Vertically,groundwater in shallow confined aquifer(SCA)had the greatest I concentration,followed by single-structure phreatic aquifer(SSPA),phreatic aquifer in confined groundwater area(PACGA),while groundwater in deep confined aquifer(DCA)generally had low I concentration.Groundwater I enrichment in SSPA was mainly affected by organic matter(OM)decomposition and that in SCA was mainly affected by evaporite mineral dissolution,OM decomposition under alkaline environment.While I enrichment in groundwater of PACGA was restrained under neutral environment.Lacustrine sedimentary environment was crucial for I enrichment in groundwater.Besides,fine-grained lithology of aquifer,smooth topographic slope,shallow buried depth of groundwater,weak alkaline and reducing environment,reductive dissolution of iron oxide/hydroxide minerals and OM decomposition were advantageous to I enrichment in groundwater.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3702200)the National Natural Science Foundation of China(Grant Nos.42372279 and U2267218)the Natural Science Foundation of Anhui Province(Grant No.JZ2022AKZR0451).
文摘Constructing impermeable curtains to contain contaminant in aquifers is a costly and complex process that can impact the structure integrity of aquifer systems.Are impermeable curtains necessary for a groundwater contaminant remediation project?This study evaluates the necessity of impermeable curtains for groundwater contaminant remediation projects.Specifically,it considers remediation efforts based on the Pump and Treat(PAT)technique under various hydrogeological conditions and contaminant properties,comparing the total remediation cost and effectiveness.To further investigate,a multi-objective simulation and optimization model,utilizing the Multi-Objective Fast Harmony Search(MOFHS)algorithm,was employed to identify optimal groundwater remediation system designs that without impermeable curtains.Both a two-dimensional(2-D)hypothetical example and a three-dimensional(3-D)field example were used to assess the necessity of constructing impermeable curtains.The 2-D hypothetical example demonstrated that the installation of impermeable curtain is justified only when the dispersivity(αL)of the contaminant reaches 100 meters.In most cases,particularly at sites with porosity(n)under 0.3,alternative,more cost-effective,and efficient remediation strategies may be available,making impermeable barriers unnecessary.The optimization results of the 3-D field example further corroborate the conclusions derived from the 2-D hypothetical example.These findings provide valuable guidance for more scientifically informed,reasonable,and cost-effective groundwater contaminant remediation projects.
基金supported by the National Natural Science Foundation of China (41272377)
文摘Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotropy and discontinuity of the karst water-bearing media in these areas. In this study, we used the Guang'an Longtan Coal mine in Sichuan as an example, and generalized the complex hydrogeological conditions in the reservoir area. A finite element numerical flow model was used to simulate current and future scenarios of roadway gushing at the bottom of the coal mine at pile number 1 + 700 m. The results show that the roadway section corresponding to valleys has a gushing quantity of 4323.8–4551.25 m^3/d before impoundment. Modeled water inflow after impoundment increased to 1.6 times the water inflow before impoundment, which threatens the impoundment as well as the roadway's normal operation. Therefore, roadway processing measures are needed to guarantee the safety of the impoundment and of the mining operation.
文摘This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the lagoon, which include factors such as size, depth, water quality, and ecosystem composition. Secondly, the influence of precipitation on the water volume in the lagoon will be examined. This analysis involves assessing historical rainfall patterns in the region, as well as the amount and frequency of precipitation during the 2021 flood event. Thirdly, the hydrogeologic and geologic conditions of the lagoon will be evaluated. This involves examining factors such as the type and structure of the soil and bedrock, the presence of aquifers or other underground water sources, and the movement of water through the surrounding landscape. Finally, the study seeks to assess the risk of future flooding in Tasi-Tolu Lagoon, based on the insights gained from the previous analyses. Overall, this study’s goal is to provide a comprehensive understanding of the hydrogeological factors that contribute to flooding in Tasi-Tolu Lagoon. This knowledge could be used to inform flood mitigation strategies or to improve our ability to predict and respond to future flooding events in the region.
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
基金This work was financially supported by the Hydrogeology and Water Resources Survey Program of China Geological Survey(20230006-06,DD20190322)the National Natural Science Foundation of China(42130613).
文摘The surface watershed and groundwater basin have fixed recharge scale,which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding eco-geological environment pattern.To accurately identify the boundary of the surface watershed and groundwater basin is the basis for properly understanding hydrologic cycle and conducting the water balance analysis at watershed scale in complicated geologic structure area,especially when the boundary are inconsistent.In this study,the Dalinuoer Lake located in the middle of the Inner Mongolian Plateau which has complicated geologic structure was selected as the representative case.Based on the multidisciplinary comprehensive analysis of topography,tectonics,hydrogeology,groundwater dynamics and stable isotopes,the results suggest the following:(1)The surface watershed ridge and groundwater basin divide of Dalinuoer Lake are inconsistent.The surface watershed was divided into two separate groundwater systems almost having no groundwater exchange by the SW-NE Haoluku Anticlinorium Fault which has obvious water-blocking effect.The surface drainage area of Dalinuoer Lake is 6139 km^(2).The northern regional A is the Dalinuoer Lake groundwater system with an area of 4838 km^(2),and the southern regional B is the Xilamulun Riverhead groundwater system with an area of 1301 km^(2).(2)The groundwater in the southern of regional A and the spring-feeding river are the important recharge sources for the Dalinuoer Lake,and it has greater recharge effects than the northern Gonggeer River system.(3)It is speculated that the trend of Haoluku Anticlinorium Fault is the boundary of the westerlies and the East Asian summer Monsoon(EASM)climate systems,which further pinpoints the predecessor’s understanding of this boundary line.At present,the Dalinuoer Lake watershed is proved to have gone through a prominent warming-drying trend periods,which leads to the precipitation reduction,temperature rise,human activities water usage increasement.So the hydrological cycle and lake eco-environment at watershed scale will still bound to be change,which may pose the potential deterioration risk on the suitability of fish habitat.The results can provide basic support for better understanding water balance evolution and lake area shrinkage cause as well as the ecological protection and restoration implementation of Dalinuoer Lake watershed.
文摘By analysing the hydrogeological conditions of this region and the coal mines hereof, together with the water hazards troubled Shennan mine area in recent years, this paper summarized six types of mine water hazards. As per the basic characteristics, geological distribution, threat degree and difficulty of prevention of various water hazards, along with the practice of water prevention in the mining area, this article proposed effective technical measures for the prevention and control of different water hazards and laid a solid foundation for the safe production in the mining area.
文摘Discharge is one of the most important quantitative characteristics of springs.It not only specifies the yield of groundwater but also reflects the water retention conditions of the aquifer.An analysis of a long-term spring discharges enables linking them to hydrogeological and meteorological conditions of their catchment area as well as calculation of seasonal and multiannual variability parameters.The paper includes data on 84 springs in southern Poland collected in PIG-PIB databases.