This paper reviewed the main achievements of hydrogeological survey in China,summarized the significant progress of hydrogeological survey over the past decade,and forecasted the key responsibilities for hydrogeologic...This paper reviewed the main achievements of hydrogeological survey in China,summarized the significant progress of hydrogeological survey over the past decade,and forecasted the key responsibilities for hydrogeological survey in the“14th Five-year Plan”.The significant progress includes:China established the 1:50000 standard hydrogeological survey system with Chinese characteristics and produced the new generation of highquality hydrogeological maps;the national groundwater monitoring project was completed and accepted,which marks China taking the leading position in groundwater monitoring internationally;fruitful results were achieved in the national groundwater quality survey,and groundwater quality background values were basically identified and checked;hydrogeological and environmental geological survey was continuously promoted in karst areas and the ecological restoration of rocky desertification achieved remarkable results;China strengthened layer exploration techniques for groundwater,integrating the key and practical techniques of layer exploration and monitoring;the exploration of groundwater in the poverty-stricken regions and old revolutionary base areas were effectively promoted to strongly guarantee the poverty alleviation and drinking water safety;the mystery of desert groundwater was uncovered,making up for the shortage of 1:250000 hydrogeological survey in the Badain Jaran Desert;and more efforts were made to conduct survey on the water resources in the basin,and to finish the unified measurement of national-scale groundwater level.展开更多
The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considera...The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considerable scientific issues on the protection of salt lake resources and infrastructure,and monitoring of hydrological processes at the lake-basin scale.Although the spatial-temporal trends of lake changes on the Qinghai-Tibet Plateau(QTP)have been well documented,the underlying influencing mechanism and hydrogeological implications of rapid lake changes in the QB are not well understood.Three lakes in the northern QB were selected to investigate lake water level fluctuations on different time scales based on extensive in-situ monitoring and satellite observations.The influencing mechanism and hydrogeological implications of rapid changes of terminal lakes were discussed in combination with the reported increasing precipitation rate and mass balance of glaciers in the northern QTP.Results reveal the following:(1)the fluctuation pattern of Sugan Lake was asynchronous and out of phase with that of Xiao Qaidam and Toson lakes during the monitoring period;(2)Sugan Lake water rose gradually,and the rise interval was from late April to early July.In contrast,Xiao Qaidam and Toson lakes took on a rapid and steep rise,and the rise intervalwas from late July to September;(3)the influencing mechanisms for rapid lake fluctuations are controlled by different factors:glacier and snow melting with increasing temperature for Sugan Lake and increasing precipitation for Xiao Qaidam and Toson lakes;(4)in accordance with different intervals and influencing mechanisms of rapid lake expansions in the QB,hydrological risk precaution of lakes and corresponding river catchments was conducted in different parts of the basin.This study provided an important scientific basis for assessing the hydrological process and hydrological risk precaution,and protection of salt lake resources along with rapid lake expansions in the arid area.展开更多
Hydrogeological investigations, tectonics and seismic reflection show the complexity of the Horchane groundwater and drainage possibilities with neighboring groundwater in central Tunisia. Seismic reflection lines int...Hydrogeological investigations, tectonics and seismic reflection show the complexity of the Horchane groundwater and drainage possibilities with neighboring groundwater in central Tunisia. Seismic reflection lines intersecting the region show the role of halokinetic movements, by the intrusion along preexisting faults, in the restructuring of the hydrogeological basin. The salt domes associated with a chaotic facies at the base of outcrops, that limit the Horchane basin, puch to outcrops the areas of recharge area. Geoelectric section shows the anisotropy and the importance of Mio-Plio-Quaternary (MPQ) sediment along the gutters, between the outcrops of El Hafay and Kebar on the one hand, and outcrops of Kebar and Majoura on the other. These gutters are communicated with channels that facilitate drainage of the Horchane complex groundwater by that Gammouda in North-East and Braga in East. The results of this study clearly indicate the important role of the geology in the restructuring of groundwater basins, through early halokinetic movements. (i.e. halokinetic movements). The aquifer geometry is controlled by the ascent of Triassic salt material, from the Middle Jurassic, in central Tunisia.展开更多
Resistivity tomography, an advanced technique reconstructing resistivity image from a series of potential survey of electrode arrays is quite different from the non linear inversion of wave problems. The main pro...Resistivity tomography, an advanced technique reconstructing resistivity image from a series of potential survey of electrode arrays is quite different from the non linear inversion of wave problems. The main problem in the resistivity reconstruction is how to solve the Poisson′s equation of direct current fields in voluminous media and to complete the inversion iteration efficiently. A mathematical idea of cascade algorithm proposed by Shima (1992), as an example, is introduced briefly in this paper. The emergence of water flood in tunnels in Wennan Coal Mine, Shandong Province, gave us chances to carry out hydrogeological exploration twice using resistivity tomography in 1995~1996. Three profiles with a total length of 5832 m and a maximum depth of 120 m in tomograms are completed. The series of resulting tomograms distinctly reveal the distributions of stratigraphic structure, mined out areas, fracture zones, crack belts and piping water loss zones. These results from tomograms are verified by drill records and then successfully adopted in the followed hydrogeological engineering in the coal mine. Finally, the authors discussed the technical method and existing problems in resistivity tomography.展开更多
The purpose of this study was to develop an approach for constructing a three-dimensional hydrogeologic framework using borehole driller logs. The ultimate goal is to increase drilling success rates via a better under...The purpose of this study was to develop an approach for constructing a three-dimensional hydrogeologic framework using borehole driller logs. The ultimate goal is to increase drilling success rates via a better understanding of the regional hydrogeologic framework in northern Ghana. Groundwater development has increased in northern Ghana, but drilling successful boreholes is difficult due to complex geology and limited aquifer characteristic information. An approach was developed to construct a three-dimensional hydrogeologic framework of the basin using 900 borehole logs from World Vision International’s Ghana Integrated Water, Sanitation, and Hygiene Project, located in northern Ghana. The study’s approach consists of: evaluating potential software programs;collecting borehole drilling logs;data QA/QC;data standardization and normalization;analysis for trends and correlations;and creation of a three-dimensional hydrogeologic framework and two-dimensional cross sections. This approach can be used and adapted by others working to provide groundwater in developing countries.展开更多
Hydrogeological and hydrochemical assessments were carried out in Assin and Breman districts of Ghana. A multi-criteria approach was used in the assessment of the basin granitoids including;electrical resistivity surv...Hydrogeological and hydrochemical assessments were carried out in Assin and Breman districts of Ghana. A multi-criteria approach was used in the assessment of the basin granitoids including;electrical resistivity survey, pumping test and water quality analysis. A total of twenty-five (25) representative boreholes were drilled, developed and pumped;obtaining data for aquifer hydraulic parameters estimation. Correlation analysis was used to determine relationships that exist between aquifer hydraulic parameters. Schoeller, Piper, Stiff plot and Gibbs diagrams were used to determine the hydrogeochemical facies, water types and the mechanism that control groundwater quality. The statistical analysis determined that aquifer hydraulic parameters discharge rate (Q), hydraulic conductivity (K) and Transmissivity (T) showed a strong positive correlation with specific capacity (Q/Sw) with R value 0.8462, 0.8738 and 0.8332 respectively. The K and T were respectively between 0.02 - 0.90 m/day and 0.36 - 13.47 m2/day with mean of 0.24 m/day and 3.03 m2/day respectively. The K values indicate a hydrogeological condition of aquiclude with relatively low permeability and medium water bearing capacity. The aquifer T magnitude is very low to low, groundwater potential is adequate for local water supply with limited and private consumption. All physicochemical parameters were within the permissible limits of Ghana Standards Authority (GSA) and World Health Organisation (WHO) except for apparent colour, pH, Fe and Mn. Distribution of major ions in groundwater samples was calculated and the general trend among cations and anions was found to be Ca2+ > Na+ > Mg2+ and Cl? > HCO3? > SO42? respectively. The study area shows five main water types namely;Ca-HCO3, Na-Mg-HCO3-SO4, Ca-SO4, Na-Cl and Mg-Na-Cl. Weathering of rock-forming minerals as the mechanism controlling the groundwater chemistry. Microbiological parameters were above the permissible limits. Groundwater is suitable for drinking after treatment with chlorination, aeration and slow sand filtration methods.展开更多
Surface morphology and internal composition of large rockslide deposits have been frequently studied, but their hydrogeologic conditions and consequences for (drinking) water quality and quantity on such deposits are ...Surface morphology and internal composition of large rockslide deposits have been frequently studied, but their hydrogeologic conditions and consequences for (drinking) water quality and quantity on such deposits are largely unknown. In this study we provide first information on this critical relationship for two large rockslide deposits in the Khumbu Himal (Nepal), which are at the same time the main settlement areas in the region. In the first step, we investigated the Lukla and the Namche-Khumjung rockslides with respect to their dimensions and internal composition based on orthophotos and digital elevation models, geomorphologic field mapping, and the analysis of rockslide outcrops. Secondly, we studied their hydrogeologic characteristics by means of spring water mapping, sampling and analyses. As a consequence of the fragmented and highly shattered rockslide material, both deposits are characterized by 1) effective infiltration, 2) short residence times of percolating water and 3) by only small amounts of available spring water and surface runoff at all. Human activity on the studied rockslide deposits can therefore be described as an ambivalent relationship: On the one hand, the rockslide deposits provide a gentle topography and the only available areas for extensive settlements and agriculture in the steep upper DudhKosi catchment;On the other hand, their internal composition accounts for water scarcity—a critical issue for the local population demanding for adaptation strategies, especially in the light of the ever—increasing trekking and expedition tourism in the region.展开更多
This paper presents a corrosion assessment of copper spent nuclear fuel disposal canisters in crystalline rock,using hydrogeological modeling.A simplified approach is considered,to avoid complex and time-consuming com...This paper presents a corrosion assessment of copper spent nuclear fuel disposal canisters in crystalline rock,using hydrogeological modeling.A simplified approach is considered,to avoid complex and time-consuming computer simulations.This simplified case is presented as a base case,with changes in the hydrogeological parameters presented as variant cases.The results show that in Taiwan’s base case,decreasing the hydraulic conductivity of the rock or decreasing the hydraulic conductivity of dikes results in a shorter transport path for sulfide and an increase in corrosion depth.However,the estimated canister failure time is still over one million years in the variant cases.展开更多
Located in the southeastern of Côte d’Ivoire, Bonoua aquifer contains an enormous groundwater potential. The new boreholes have been realized in this region to support the water supply of the populations. Mor...Located in the southeastern of Côte d’Ivoire, Bonoua aquifer contains an enormous groundwater potential. The new boreholes have been realized in this region to support the water supply of the populations. Moreover, in this region, agriculture is the main activity, whose pesticides used to guarantee the productivity, constitute a threat for groundwater. Thus, this study was undertaken in order to design a hydrogeological model able to simulate the piezometry of the Bonoua aquifer and determine the perimeters of protection for the new boreholes. The model, carried out under the Visual Modflow interface, was designed in steady-state mode and calibrated manually from the piezometry of the year 2000. The value of the standardized root mean squared residual of 4.86% (<10%) allows to say that the calibration obtained is considered satisfactory. Also, the correlation coefficient between observed and simulated heads of 0.95 permits to confirm a good calibration of the model. Perimeters of protection values were determined by simulating the paths of the virtual particles of water from the calibrated model. The simulations show that generally, the groundwater of Bonoua aquifer flows from north to south and the piezometric levels obtained vary between 65 m in the north and 5 m in the south. Upstream radius of the closed perimeters of protection calculated from the model varies from 172 to 482 m. However, those of distant perimeters of protection vary from 2877 to 6441 m.展开更多
This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the l...This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the lagoon, which include factors such as size, depth, water quality, and ecosystem composition. Secondly, the influence of precipitation on the water volume in the lagoon will be examined. This analysis involves assessing historical rainfall patterns in the region, as well as the amount and frequency of precipitation during the 2021 flood event. Thirdly, the hydrogeologic and geologic conditions of the lagoon will be evaluated. This involves examining factors such as the type and structure of the soil and bedrock, the presence of aquifers or other underground water sources, and the movement of water through the surrounding landscape. Finally, the study seeks to assess the risk of future flooding in Tasi-Tolu Lagoon, based on the insights gained from the previous analyses. Overall, this study’s goal is to provide a comprehensive understanding of the hydrogeological factors that contribute to flooding in Tasi-Tolu Lagoon. This knowledge could be used to inform flood mitigation strategies or to improve our ability to predict and respond to future flooding events in the region.展开更多
In compilation of 1: 50 000 hydrogeological map, Some principles which are suitable for hydrogeological characteristics in China have been defined. Groundwater development and protection have been regarded as equally ...In compilation of 1: 50 000 hydrogeological map, Some principles which are suitable for hydrogeological characteristics in China have been defined. Groundwater development and protection have been regarded as equally important. Some key problems such as classification of water-bearing formation, water yield property, color system and color scale of water yield property of water-bearing formation, expression of groundwater system, expression of hydrogeological parameters have been solved. This standardizing work can lay solid foundation for integration of 1: 50 000 synthetic hydrogeological map achievement and data, so as to broaden the service areas of hydrogeological survey.展开更多
This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological stru...This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.展开更多
Senegal’s drinking water supply comes on the one hand from groundwater and mainly from Maastrichtian and Paleocene aquifers. The Tassette area included in the Thies region has such potential that the Paleocene is cur...Senegal’s drinking water supply comes on the one hand from groundwater and mainly from Maastrichtian and Paleocene aquifers. The Tassette area included in the Thies region has such potential that the Paleocene is currently exploited to cover a certain part of Dakar’s important water needs. In addition, the city of Thies is itself confronted with the problems of limestone present in its drinking water and generally creating problems of scaling pipes. A water transfer is therefore a possible option to deal with this situation. This study will consist of modelling the Tassette aquifer to determine if it will cover Thies’ water needs over a period of 20 years. To assess the responses of the groundwater to pumping at this level and the changes that may occur, a numerical hydrogeological model is necessary. In order to have a better overview of the area, boreholes and piezometric tests were carried out, highlighting the different characteristics of the aquifer and the water it contains. Based on these, the model was developed according to a mesh system and more precisely by discretization and simulation according to the finite difference method from the Visual Modflow Flex software. The results observed for this modelling show that the city of Thies cannot be supplied as a whole. This mining model also causes brackish water intrusion. On the other hand, the additional withdrawal of a certain quantity of water compared to the current situation does not have as great negative impacts and would still partially meet the expectations of this modelling.展开更多
China's resource allocation is relatively extensive, the geological engineering committee internal regional relief there is a big difference, the geological research directly affects the technical research, the ge...China's resource allocation is relatively extensive, the geological engineering committee internal regional relief there is a big difference, the geological research directly affects the technical research, the geological research is conducive to the construction of facilities to provide more geological data support. Therefore, we analyze the meteorological disasters of the Geological Engineering Committee and emphasize the appropriate measures to reduce the impact of meteorological disasters on the quality of engineering construction.展开更多
Through the effective exploration of the geotechnical engineering survey and design work and the hydrogeological related problems, the potential bad problems in the geotechnical engineering construction stage and the ...Through the effective exploration of the geotechnical engineering survey and design work and the hydrogeological related problems, the potential bad problems in the geotechnical engineering construction stage and the design stage can be clarified. Targeted hydrogeological survey can effectively improve the safety of geotechnical construction and the reliability of construction operation. This paper deeply and effectively analyzes and explores the hydrogeological survey work in order to provide a reference for the smooth and effective development of geotechnical engineering.展开更多
Geological disasters occurred frequently in recent years, people to improve the recognition of geological prospecting work, the hydrogeologic investigation is part of the more important content, do a good job in this ...Geological disasters occurred frequently in recent years, people to improve the recognition of geological prospecting work, the hydrogeologic investigation is part of the more important content, do a good job in this part of the work is helpful to better understand the geological environment condition, on this basis, make effective prevention measures, reduce geological disasters, and to some degree of geological disaster prevention. Therefore, this paper first analyzes the essence of hydrogeological survey, and then discusses its specific application in environmental geological exploration.展开更多
Under the current background, the type, growth and production of solid minerals can be accurately grasped in the exploration of solid minerals. Therefore, it is necessary to pay attention to the exploration of solid m...Under the current background, the type, growth and production of solid minerals can be accurately grasped in the exploration of solid minerals. Therefore, it is necessary to pay attention to the exploration of solid minerals, analyze the characteristics of geological structure and hydrogeology in detail, and conduct scientific and effective analysis through scientific and effective analysis. Obtain valuable data to provide support for the development of mineral mining work, improve the utilization rate of mineral resources, reduce the incidence of mining accidents, and make mineral mining scientific and effective.展开更多
The hydrogeological disasters in open-pit coal mines are of great harmfulness. By analyzing the factors that lead to the hydrogeological disasters in coal mines, we can make full use of the existing technical conditio...The hydrogeological disasters in open-pit coal mines are of great harmfulness. By analyzing the factors that lead to the hydrogeological disasters in coal mines, we can make full use of the existing technical conditions, using the advanced scientific technology such as gamma ray technology, borehole perspective technology, flow logging technology and seismic exploration technology, and taking effective measures to pay attention to the work of hydrological observation in coal mines, doing well the work of coal mine hydrogeological exploration, doing well the measures of underground water prevention, combining the actual situation of open-pit coal mine, doing well the prevention work of coal mine hydrogeological disaster scientifically and reasonably, to ensure the safety of coal mine workers, to enhance the safety of coal mining operations, to promote the sustainable, healthy and stable development of our coal industry.展开更多
With the increase of the importance of geological exploration in China, the study of hydrogeology in modern engineering exploration status is more and more important. In recent years, with the emergence of energy shor...With the increase of the importance of geological exploration in China, the study of hydrogeology in modern engineering exploration status is more and more important. In recent years, with the emergence of energy shortage in China, nationwide attention to hydrogeological conditions is becoming more and more important. Under this condition, this paper analyzes the evaluation content of hydrogeological conditions in geological drilling construction, for reference only.展开更多
文摘This paper reviewed the main achievements of hydrogeological survey in China,summarized the significant progress of hydrogeological survey over the past decade,and forecasted the key responsibilities for hydrogeological survey in the“14th Five-year Plan”.The significant progress includes:China established the 1:50000 standard hydrogeological survey system with Chinese characteristics and produced the new generation of highquality hydrogeological maps;the national groundwater monitoring project was completed and accepted,which marks China taking the leading position in groundwater monitoring internationally;fruitful results were achieved in the national groundwater quality survey,and groundwater quality background values were basically identified and checked;hydrogeological and environmental geological survey was continuously promoted in karst areas and the ecological restoration of rocky desertification achieved remarkable results;China strengthened layer exploration techniques for groundwater,integrating the key and practical techniques of layer exploration and monitoring;the exploration of groundwater in the poverty-stricken regions and old revolutionary base areas were effectively promoted to strongly guarantee the poverty alleviation and drinking water safety;the mystery of desert groundwater was uncovered,making up for the shortage of 1:250000 hydrogeological survey in the Badain Jaran Desert;and more efforts were made to conduct survey on the water resources in the basin,and to finish the unified measurement of national-scale groundwater level.
基金Supported by the Second Tibetan Plateau Scientific Expedition and Research Program(No.2019 QZKK 0805)the National Natural Science Foundation of China(No.U 21 A 2018)the Foundation of Department of Qinghai Science&Technology(No.2020-ZJ-T 06)。
文摘The Qaidam Basin(QB)is a concentrated distribution area and chemical industrial bases of salt lakes in China.Lakes in the QB have been expanding during the past 20 years.Rapid lake expansion resulted in some considerable scientific issues on the protection of salt lake resources and infrastructure,and monitoring of hydrological processes at the lake-basin scale.Although the spatial-temporal trends of lake changes on the Qinghai-Tibet Plateau(QTP)have been well documented,the underlying influencing mechanism and hydrogeological implications of rapid lake changes in the QB are not well understood.Three lakes in the northern QB were selected to investigate lake water level fluctuations on different time scales based on extensive in-situ monitoring and satellite observations.The influencing mechanism and hydrogeological implications of rapid changes of terminal lakes were discussed in combination with the reported increasing precipitation rate and mass balance of glaciers in the northern QTP.Results reveal the following:(1)the fluctuation pattern of Sugan Lake was asynchronous and out of phase with that of Xiao Qaidam and Toson lakes during the monitoring period;(2)Sugan Lake water rose gradually,and the rise interval was from late April to early July.In contrast,Xiao Qaidam and Toson lakes took on a rapid and steep rise,and the rise intervalwas from late July to September;(3)the influencing mechanisms for rapid lake fluctuations are controlled by different factors:glacier and snow melting with increasing temperature for Sugan Lake and increasing precipitation for Xiao Qaidam and Toson lakes;(4)in accordance with different intervals and influencing mechanisms of rapid lake expansions in the QB,hydrological risk precaution of lakes and corresponding river catchments was conducted in different parts of the basin.This study provided an important scientific basis for assessing the hydrological process and hydrological risk precaution,and protection of salt lake resources along with rapid lake expansions in the arid area.
文摘Hydrogeological investigations, tectonics and seismic reflection show the complexity of the Horchane groundwater and drainage possibilities with neighboring groundwater in central Tunisia. Seismic reflection lines intersecting the region show the role of halokinetic movements, by the intrusion along preexisting faults, in the restructuring of the hydrogeological basin. The salt domes associated with a chaotic facies at the base of outcrops, that limit the Horchane basin, puch to outcrops the areas of recharge area. Geoelectric section shows the anisotropy and the importance of Mio-Plio-Quaternary (MPQ) sediment along the gutters, between the outcrops of El Hafay and Kebar on the one hand, and outcrops of Kebar and Majoura on the other. These gutters are communicated with channels that facilitate drainage of the Horchane complex groundwater by that Gammouda in North-East and Braga in East. The results of this study clearly indicate the important role of the geology in the restructuring of groundwater basins, through early halokinetic movements. (i.e. halokinetic movements). The aquifer geometry is controlled by the ascent of Triassic salt material, from the Middle Jurassic, in central Tunisia.
文摘Resistivity tomography, an advanced technique reconstructing resistivity image from a series of potential survey of electrode arrays is quite different from the non linear inversion of wave problems. The main problem in the resistivity reconstruction is how to solve the Poisson′s equation of direct current fields in voluminous media and to complete the inversion iteration efficiently. A mathematical idea of cascade algorithm proposed by Shima (1992), as an example, is introduced briefly in this paper. The emergence of water flood in tunnels in Wennan Coal Mine, Shandong Province, gave us chances to carry out hydrogeological exploration twice using resistivity tomography in 1995~1996. Three profiles with a total length of 5832 m and a maximum depth of 120 m in tomograms are completed. The series of resulting tomograms distinctly reveal the distributions of stratigraphic structure, mined out areas, fracture zones, crack belts and piping water loss zones. These results from tomograms are verified by drill records and then successfully adopted in the followed hydrogeological engineering in the coal mine. Finally, the authors discussed the technical method and existing problems in resistivity tomography.
文摘The purpose of this study was to develop an approach for constructing a three-dimensional hydrogeologic framework using borehole driller logs. The ultimate goal is to increase drilling success rates via a better understanding of the regional hydrogeologic framework in northern Ghana. Groundwater development has increased in northern Ghana, but drilling successful boreholes is difficult due to complex geology and limited aquifer characteristic information. An approach was developed to construct a three-dimensional hydrogeologic framework of the basin using 900 borehole logs from World Vision International’s Ghana Integrated Water, Sanitation, and Hygiene Project, located in northern Ghana. The study’s approach consists of: evaluating potential software programs;collecting borehole drilling logs;data QA/QC;data standardization and normalization;analysis for trends and correlations;and creation of a three-dimensional hydrogeologic framework and two-dimensional cross sections. This approach can be used and adapted by others working to provide groundwater in developing countries.
文摘Hydrogeological and hydrochemical assessments were carried out in Assin and Breman districts of Ghana. A multi-criteria approach was used in the assessment of the basin granitoids including;electrical resistivity survey, pumping test and water quality analysis. A total of twenty-five (25) representative boreholes were drilled, developed and pumped;obtaining data for aquifer hydraulic parameters estimation. Correlation analysis was used to determine relationships that exist between aquifer hydraulic parameters. Schoeller, Piper, Stiff plot and Gibbs diagrams were used to determine the hydrogeochemical facies, water types and the mechanism that control groundwater quality. The statistical analysis determined that aquifer hydraulic parameters discharge rate (Q), hydraulic conductivity (K) and Transmissivity (T) showed a strong positive correlation with specific capacity (Q/Sw) with R value 0.8462, 0.8738 and 0.8332 respectively. The K and T were respectively between 0.02 - 0.90 m/day and 0.36 - 13.47 m2/day with mean of 0.24 m/day and 3.03 m2/day respectively. The K values indicate a hydrogeological condition of aquiclude with relatively low permeability and medium water bearing capacity. The aquifer T magnitude is very low to low, groundwater potential is adequate for local water supply with limited and private consumption. All physicochemical parameters were within the permissible limits of Ghana Standards Authority (GSA) and World Health Organisation (WHO) except for apparent colour, pH, Fe and Mn. Distribution of major ions in groundwater samples was calculated and the general trend among cations and anions was found to be Ca2+ > Na+ > Mg2+ and Cl? > HCO3? > SO42? respectively. The study area shows five main water types namely;Ca-HCO3, Na-Mg-HCO3-SO4, Ca-SO4, Na-Cl and Mg-Na-Cl. Weathering of rock-forming minerals as the mechanism controlling the groundwater chemistry. Microbiological parameters were above the permissible limits. Groundwater is suitable for drinking after treatment with chlorination, aeration and slow sand filtration methods.
文摘Surface morphology and internal composition of large rockslide deposits have been frequently studied, but their hydrogeologic conditions and consequences for (drinking) water quality and quantity on such deposits are largely unknown. In this study we provide first information on this critical relationship for two large rockslide deposits in the Khumbu Himal (Nepal), which are at the same time the main settlement areas in the region. In the first step, we investigated the Lukla and the Namche-Khumjung rockslides with respect to their dimensions and internal composition based on orthophotos and digital elevation models, geomorphologic field mapping, and the analysis of rockslide outcrops. Secondly, we studied their hydrogeologic characteristics by means of spring water mapping, sampling and analyses. As a consequence of the fragmented and highly shattered rockslide material, both deposits are characterized by 1) effective infiltration, 2) short residence times of percolating water and 3) by only small amounts of available spring water and surface runoff at all. Human activity on the studied rockslide deposits can therefore be described as an ambivalent relationship: On the one hand, the rockslide deposits provide a gentle topography and the only available areas for extensive settlements and agriculture in the steep upper DudhKosi catchment;On the other hand, their internal composition accounts for water scarcity—a critical issue for the local population demanding for adaptation strategies, especially in the light of the ever—increasing trekking and expedition tourism in the region.
文摘This paper presents a corrosion assessment of copper spent nuclear fuel disposal canisters in crystalline rock,using hydrogeological modeling.A simplified approach is considered,to avoid complex and time-consuming computer simulations.This simplified case is presented as a base case,with changes in the hydrogeological parameters presented as variant cases.The results show that in Taiwan’s base case,decreasing the hydraulic conductivity of the rock or decreasing the hydraulic conductivity of dikes results in a shorter transport path for sulfide and an increase in corrosion depth.However,the estimated canister failure time is still over one million years in the variant cases.
文摘Located in the southeastern of Côte d’Ivoire, Bonoua aquifer contains an enormous groundwater potential. The new boreholes have been realized in this region to support the water supply of the populations. Moreover, in this region, agriculture is the main activity, whose pesticides used to guarantee the productivity, constitute a threat for groundwater. Thus, this study was undertaken in order to design a hydrogeological model able to simulate the piezometry of the Bonoua aquifer and determine the perimeters of protection for the new boreholes. The model, carried out under the Visual Modflow interface, was designed in steady-state mode and calibrated manually from the piezometry of the year 2000. The value of the standardized root mean squared residual of 4.86% (<10%) allows to say that the calibration obtained is considered satisfactory. Also, the correlation coefficient between observed and simulated heads of 0.95 permits to confirm a good calibration of the model. Perimeters of protection values were determined by simulating the paths of the virtual particles of water from the calibrated model. The simulations show that generally, the groundwater of Bonoua aquifer flows from north to south and the piezometric levels obtained vary between 65 m in the north and 5 m in the south. Upstream radius of the closed perimeters of protection calculated from the model varies from 172 to 482 m. However, those of distant perimeters of protection vary from 2877 to 6441 m.
文摘This study aims to apply a hydrogeological approaches and analysis of the 2021 flood event of Tasi-Tolu Lagoon to achieve four specific goals. Firstly, the study seeks to determine the natural characteristics of the lagoon, which include factors such as size, depth, water quality, and ecosystem composition. Secondly, the influence of precipitation on the water volume in the lagoon will be examined. This analysis involves assessing historical rainfall patterns in the region, as well as the amount and frequency of precipitation during the 2021 flood event. Thirdly, the hydrogeologic and geologic conditions of the lagoon will be evaluated. This involves examining factors such as the type and structure of the soil and bedrock, the presence of aquifers or other underground water sources, and the movement of water through the surrounding landscape. Finally, the study seeks to assess the risk of future flooding in Tasi-Tolu Lagoon, based on the insights gained from the previous analyses. Overall, this study’s goal is to provide a comprehensive understanding of the hydrogeological factors that contribute to flooding in Tasi-Tolu Lagoon. This knowledge could be used to inform flood mitigation strategies or to improve our ability to predict and respond to future flooding events in the region.
基金based on the project of Geological Survey Standards Making, Upgrading and Promoting (12120115053501)。
文摘In compilation of 1: 50 000 hydrogeological map, Some principles which are suitable for hydrogeological characteristics in China have been defined. Groundwater development and protection have been regarded as equally important. Some key problems such as classification of water-bearing formation, water yield property, color system and color scale of water yield property of water-bearing formation, expression of groundwater system, expression of hydrogeological parameters have been solved. This standardizing work can lay solid foundation for integration of 1: 50 000 synthetic hydrogeological map achievement and data, so as to broaden the service areas of hydrogeological survey.
文摘This article presents the results of dividing the hydrogeological structure zones in aquifer of Cai Phan Rang river basin, Ninh Thuan province, Viet Nam, and the relationship between parameters of hydrogeological structure zones with water storage capacity of hydrogeological structure. Research results divided hydrogeological structure of Cai Phan Rang River Basin into four zones, including three zones with depression bedrock and one zone with slope bedrock, and the results assessed: (1) specific discharge of exploitation well is proportional to zone area of hydrogeological structure; (2) specific discharge of exploitation well is inversely proportional to slope of bedrock surface, slope of water level in zone and area of drainage surface of hydrogeological structure zone; (3) water level fluctuation in zone is proportional to slope of bedrock surface, slope of water level in zone and inversely proportional to distribution area of zone; (4) total mineralization of water is proportional to bedrock surface slope and water level slope in zone, and inversely proportional to drainage surface area of zone and volume of structural depression. Research results are practical significance in solutions proposal to increase exploitation capacity for various water use purposes.
文摘Senegal’s drinking water supply comes on the one hand from groundwater and mainly from Maastrichtian and Paleocene aquifers. The Tassette area included in the Thies region has such potential that the Paleocene is currently exploited to cover a certain part of Dakar’s important water needs. In addition, the city of Thies is itself confronted with the problems of limestone present in its drinking water and generally creating problems of scaling pipes. A water transfer is therefore a possible option to deal with this situation. This study will consist of modelling the Tassette aquifer to determine if it will cover Thies’ water needs over a period of 20 years. To assess the responses of the groundwater to pumping at this level and the changes that may occur, a numerical hydrogeological model is necessary. In order to have a better overview of the area, boreholes and piezometric tests were carried out, highlighting the different characteristics of the aquifer and the water it contains. Based on these, the model was developed according to a mesh system and more precisely by discretization and simulation according to the finite difference method from the Visual Modflow Flex software. The results observed for this modelling show that the city of Thies cannot be supplied as a whole. This mining model also causes brackish water intrusion. On the other hand, the additional withdrawal of a certain quantity of water compared to the current situation does not have as great negative impacts and would still partially meet the expectations of this modelling.
文摘China's resource allocation is relatively extensive, the geological engineering committee internal regional relief there is a big difference, the geological research directly affects the technical research, the geological research is conducive to the construction of facilities to provide more geological data support. Therefore, we analyze the meteorological disasters of the Geological Engineering Committee and emphasize the appropriate measures to reduce the impact of meteorological disasters on the quality of engineering construction.
文摘Through the effective exploration of the geotechnical engineering survey and design work and the hydrogeological related problems, the potential bad problems in the geotechnical engineering construction stage and the design stage can be clarified. Targeted hydrogeological survey can effectively improve the safety of geotechnical construction and the reliability of construction operation. This paper deeply and effectively analyzes and explores the hydrogeological survey work in order to provide a reference for the smooth and effective development of geotechnical engineering.
文摘Geological disasters occurred frequently in recent years, people to improve the recognition of geological prospecting work, the hydrogeologic investigation is part of the more important content, do a good job in this part of the work is helpful to better understand the geological environment condition, on this basis, make effective prevention measures, reduce geological disasters, and to some degree of geological disaster prevention. Therefore, this paper first analyzes the essence of hydrogeological survey, and then discusses its specific application in environmental geological exploration.
文摘Under the current background, the type, growth and production of solid minerals can be accurately grasped in the exploration of solid minerals. Therefore, it is necessary to pay attention to the exploration of solid minerals, analyze the characteristics of geological structure and hydrogeology in detail, and conduct scientific and effective analysis through scientific and effective analysis. Obtain valuable data to provide support for the development of mineral mining work, improve the utilization rate of mineral resources, reduce the incidence of mining accidents, and make mineral mining scientific and effective.
文摘The hydrogeological disasters in open-pit coal mines are of great harmfulness. By analyzing the factors that lead to the hydrogeological disasters in coal mines, we can make full use of the existing technical conditions, using the advanced scientific technology such as gamma ray technology, borehole perspective technology, flow logging technology and seismic exploration technology, and taking effective measures to pay attention to the work of hydrological observation in coal mines, doing well the work of coal mine hydrogeological exploration, doing well the measures of underground water prevention, combining the actual situation of open-pit coal mine, doing well the prevention work of coal mine hydrogeological disaster scientifically and reasonably, to ensure the safety of coal mine workers, to enhance the safety of coal mining operations, to promote the sustainable, healthy and stable development of our coal industry.
文摘With the increase of the importance of geological exploration in China, the study of hydrogeology in modern engineering exploration status is more and more important. In recent years, with the emergence of energy shortage in China, nationwide attention to hydrogeological conditions is becoming more and more important. Under this condition, this paper analyzes the evaluation content of hydrogeological conditions in geological drilling construction, for reference only.