Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was pr...Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model.展开更多
Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridi...Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridinium tetrafluoroborate ([Bpy]BF4) to afford the corresponding bi(indolyl)methanes in excellent yields. The notable advantages of this protocol in terms of low cost of catalyst and ionic liquid, mild conditions, simple operation, short reaction time, high yields and recycling of the ionic liquid.展开更多
The influences of misch metal (Mm) on the hydrogen storage properties of FeTi1. 3 alloy have been studied in detail. The results show that the activation behavior of the alloy can be improved dramatically when a small...The influences of misch metal (Mm) on the hydrogen storage properties of FeTi1. 3 alloy have been studied in detail. The results show that the activation behavior of the alloy can be improved dramatically when a small quantity of Mm is added. It suggested that this activation behavior is due to the cracks, which was produced in the FeTi matrix by the expansion of misch metal inclusions coming from preferential hydrogen absorption. As a result, FeTi phase with fresh oxide-free surfaces through which hydrogen can be absorbed easily is provided. In addition, hydrogen storage properties of alloy can be influenced by Mm content. The results show that the overall hydrogen storage properties of FeTi1.3 + 6. 0% Mm alloy are the best among all alloys studied.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with t...This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.展开更多
A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about com...A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchabilit...Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchability, low hysteresis, self-adhesion, andexcellent antifreezing performance, remains an unmet challenge. In this respect, zwitterionic hydrogels have emerged asideal material candidates for breaking through the above dilemma. The mechanical properties of most reported zwitterionichydrogels, however, are relatively poor, significantly restricting their use under load-bearing conditions. Traditional improve-ment approaches often involve complex preparation processes, making large-scale production challenging. Additionally,zwitterionic hydrogels prepared with chemical crosslinkers are typically fragile and prone to irreversible deformation underlarge strains, resulting in the slow recovery of structure and function. To fundamentally enhance the mechanical properties ofpure zwitterionic hydrogels, the most effective approach is the regulation of the chemical structure of zwitterionic monomersthrough a targeted design strategy. This study employed a novel zwitterionic monomer carboxybetaine urethane acrylate(CBUTA), which contained one urethane group and one carboxybetaine group on its side chain. Through the direct polym-erization of ultrahigh concentration monomer solutions without adding any chemical crosslinker, we successfully developedpure zwitterionic supramolecular hydrogels with significantly enhanced mechanical properties, self-adhesive behavior, andantifreezing performance. Most importantly, the resultant zwitterionic hydrogels exhibited high tensile strength and tough-ness and displayed ultralow hysteresis under strain conditions up to 1100%. This outstanding performance was attributedto the unique liquid–liquid phase separation phenomenon induced by the ultrahigh concentration of CBUTA monomers inan aqueous solution, as well as the enhanced polymer chain entanglement and the strong hydrogen bonds between urethanegroups on the side chains. The potential application of hydrogels in strain sensors and high-performance triboelectric nano-generators was further explored. Overall, this work provides a promising strategy for developing pure zwitterionic hydrogelsfor flexible strain sensors and self-powered electronic devices.展开更多
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders...The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.展开更多
Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and...Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and leading catalytic materials in both electro and photocatalytic water splitting(WSR);two sustainable methods of green hydrogen production.WBGs guarantee long life time of photo charge carriers and thereby surface availability of electrons and holes.Therefore,WBG(with appropriate VB-CB potential)along with small band gap materials or sensitizers can yield extraordinary photocatalytic system for hydrogen production under solar light.The factors such as,free energy of hydrogen adsorption(ΔGH^(*))close to zero,high electron mobility,great thermal as well as electro chemical stability and high tunability make WBG an interesting and excellent catalyst in electrolysis too.Taking into account the current relevance and future scope,the present review article comprehends different dimensions of WBG materials as an electro/photo catalyst for hydrogen evolution reaction.Herein WBG semiconductors are presented under various classes;viz.II-VI,III-V,III-VI,lanthanide oxides,transition metal based systems,carbonaceous materials and other systems such as SiC and MXenes.Catalytic properties of WBGs favorable for hydrogen production are then reviewed.A detailed analysis on relationship between band structure and activity(electro,photo and photo-electrochemical WSR)is performed.The challenges involved in these reactions as well as the direction of advancement in WBG based catalysis are also debated.By virtue of this article authors aims to guideline and promote the development of new WBG based electro/photocatalyst for HER and other applications.展开更多
The magnesium based metal hydrogen storage composite system Mg(NH_(2))_(2)-2LiH has a theoretical hydro-gen storage capacity of 5.6 wt.%and is a promising hydrogen storage material for vehicles.However,its application...The magnesium based metal hydrogen storage composite system Mg(NH_(2))_(2)-2LiH has a theoretical hydro-gen storage capacity of 5.6 wt.%and is a promising hydrogen storage material for vehicles.However,its application is limited due to serious thermodynamic and kinetic barriers.Introducing efficient catalysts is an effective method to improve the hydrogen storage performance of Mg(NH_(2))_(2)-2LiH.This article in-vestigates for the first time the use of nano rare earth oxide CeO_(2)(~44.5 nm)as an efficient modifier,achieving comprehensive regulation of the hydrogen storage performance of Mg(NH_(2))_(2)-2LiH composite system through oxygen vacancy driven catalysis.The modification mechanism of nano CeO_(2) is also sys-tematically studied using density functional theory(DFT)calculations and experimental results.Research has shown that the comprehensive hydrogen storage performance of the Mg(NH_(2))_(2)-2LiH-5 wt.%CeO_(2) composite system is optimal,with high hydrogen absorption and desorption kinetics and reversible per-formance.The initial hydrogen absorption and desorption temperatures of the composite system were significantly reduced from 110/130℃to 65/80℃,and the release of by-product ammonia was signifi-cantly inhibited.Under the conditions of 170℃/50 min and 180℃/100 min,4.37 wt.%of hydrogen can be rapidly absorbed and released.After 10 cycles of hydrogen release,the hydrogen cycle retention rate increased from 85%to nearly 100%.Further mechanistic studies have shown that the nano CeO_(2-x) gen-erated in situ during hydrogen evolution can effectively weaken the Mg-N and N-H bonds of Mg(NH_(2))_(2),exhibiting good catalytic effects.Meanwhile,oxygen vacancies provide a fast pathway for the diffusion of hydrogen atoms in the composite system.In addition,nano CeO_(2-x) can effectively inhibit the polycrys-talline transformation of the hydrogen evolving product Li_(2)MgN_(2)H_(2) in the system at high temperatures,reducing the difficulty of re-hydrogenation of the system.This study provides an innovative perspective for the efficient modification of magnesium based metal hydrogen storage composite materials using rare earth based catalysts,and also provides a reference for regulating the comprehensive hydrogen storage performance of hydrogen storage materials using rare earth catalysts with oxygen vacancies.展开更多
This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V...This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance.展开更多
It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for elec...It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for electrocatalytic HMF oxidative reaction(e-HMFOR)have been facing low Faradaic efficiency(FE)and high water splitting voltage.Herein,we propose a strategy of the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction by constructing a Co-Ni paired site,where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site,thus giving the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction superior electrocata lytic performances for e-HMFOR and water splitting.By optimizing conditions,the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction has high conversion of 99.7%,high selectivity of 99.9%,and high FE of 98.4%at 1.3 V,as well as low cell voltage of 1.31 V at 10 mA cm^(-2)in 1 M KOH+0.1 M HMF.This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H_(2)in an economical manner.展开更多
Ulcerative colitis has baffled researchers since the early 20th century.The pre-vailing explanation attributes the chronic recurring episodes of bloody diarrhea and abdominal pain to some form of immune abnormality,de...Ulcerative colitis has baffled researchers since the early 20th century.The pre-vailing explanation attributes the chronic recurring episodes of bloody diarrhea and abdominal pain to some form of immune abnormality,despite the lack of supporting evidence.This highlights the critical need for innovative research directions and methodologies to uncover the cause and develop a cure for this disease.By analyzing existing data from less than a dozen previously published studies,a novel,evidence-based pathogenesis was constructed,implicating colonic epithelial hydrogen peroxide as a causal factor in the development of this disease.This newly identified mechanism informed the creation of a ground-breaking class of therapeutics,known as reducing agents,which have demon-strated remarkable success in resolving colonic inflammation and restoring colonic health in patients with refractory ulcerative colitis.This paper outlines the timeline of these publications and reinterprets the findings within the context of contemporary biomedical science.展开更多
The Li-Mg-N-H(Mg(NH_(2))_(2)-2LiH)system,as a high-capacity Mg-based metal hydrogen storage material(5.6 wt%),has broad prospects for in vehicle hydrogen storage applications,but it still has high hydrogen ab/desorpti...The Li-Mg-N-H(Mg(NH_(2))_(2)-2LiH)system,as a high-capacity Mg-based metal hydrogen storage material(5.6 wt%),has broad prospects for in vehicle hydrogen storage applications,but it still has high hydrogen ab/desorption barriers.To improve its hydrogen storage performance,a nanohydrogen storage alloy was innovatively combined with Mg(NH_(2))_(2)-2LiH,AB5 type nanohydrogen storage alloy LaNi_(5)was prepared by co-precipitation method.Nano LaNi_(5)and single-walled carbon nanotubes(SWCNTs)were co-doped into the Mg(NH_(2))_(2)-2LiH system at a ratio of 10 wt%and 2 wt%,significantly enhancing the hydrogen storage performance of Mg(NH_(2))_(2)-2LiH.The initial hydrogen ab/desorption temperatures of the co-doped system decreased from110/130℃to 45/85℃.The release of by-product ammonia is significantly inhibited.4.73 wt% H_(2)can be ab/desorption in 150 min at 180/170℃.Cycle tests show that the co-doped system can still maintain a hydrogen storage capacity of 4.75 wt% after ten hydrogen release cycles.Mechanism and density functional theory study have shown that during the hydrogen release process,partially hydrogenated LaNi_(5)weakens the chemical bonding in Mg(NH_(2))_(2),promoted the dissociation of hydrogen from the Mg(NH_(2))_(2)-2LiH system,while playing a dual role of"hydrogen overflow"and"hydrogen pump".SWCNTs act as auxiliary agents,helping to refine particle size and increase thermal conductivity.The synergistic effect of the two optimizes the comprehensive hydrogen storage performance of Mg(NH_(2))_(2)-2LiH.This study provides a new research method for improving the comprehensive hydrogen storage performance of Mg-based metal hydrogen storage materials using rare earth element catalysts.展开更多
Herein,we report the multi-metal atomic catalysts for solid-state dehydrogenation of MgH_(2).It aims to reveal the multi-element synergy in catalysts for solid-state hydrogen storage.The kinetic measurements and fitti...Herein,we report the multi-metal atomic catalysts for solid-state dehydrogenation of MgH_(2).It aims to reveal the multi-element synergy in catalysts for solid-state hydrogen storage.The kinetic measurements and fitting reveal two mechanisms:one shows a maximum rate at the early stage,such as V and Cr;the other needs a temperature-sensitive preparation time for its maximum rate,such as Ni.The combina-tion of two catalyst components demonstrates the best kinetics:V and Cr boost the initial dehydrogena-tion,and Ni benefits the further hydrogen transfer which alleviates the rate of decay.This work provides guidelines for the design of multi-element doped catalysts for MgH_(2) dehydrogenation.展开更多
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma...Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.展开更多
Yaks are well-adapted to the harsh environment of the Tibetan Plateau,and they emit less enteric methane(CH_(4))and digest poor-quality forage better than cattle.To examine the potential of yak rumen inoculum to mitig...Yaks are well-adapted to the harsh environment of the Tibetan Plateau,and they emit less enteric methane(CH_(4))and digest poor-quality forage better than cattle.To examine the potential of yak rumen inoculum to mitigate CH_(4)production and improve digestibility in cattle,we incubated substrate with rumen inoculum from yak(YRI)and cattle(CRI)in vitro in five ratios(YRI:CRI):(1)0:100(control),(2)25:75,(3)50:50,(4)75:25 and(5)100:0 for 72 h.The YRI:CRI ratios of 50:50,75:25 and 100:0 produced less total gas and CH_(4)and accumulated less hydrogen(H_(2))than0:100(control)at most time points.From 12 h onwards,there was a linear decrease(P<0.05)in carbon dioxide(CO_(2))production with increasing YRI:CRI ratio.At 72 h,the ratios of 50:50 and 75:25 had higher dry matter(+7.71%and+4.11%,respectively),as well as higher acid detergent fiber digestibility(+15.5%and+7.61%,respectively),when compared to the 0:100 ratio(P<0.05).Increasing the proportion of YRI generally increased total VFA concentrations,and,concomitantly,decreased the proportion of metabolic hydrogen([2H])incorporated into CH_(4),and decreased the recovery of[2H].The lower[2H]recovery indicates unknown[2H]sinks in the culture.Estimated Gibbs free energy changes(ΔG)for reductive acetogenesis were negative,indicating the thermodynamic feasibility of this process.It would be beneficial to identify:1)the alternative[2H]sinks,which could help mitigate CH_(4)emission,and 2)core microbes involved in fiber digestion.This experiment supported lower CH_(4)emission and greater nutrient digestibility of yaks compared to cattle.Multi-omics combined with microbial culture technologies developed in recent years could help to better understand fermentation differences among species.展开更多
基金supported by the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology(BE2020081).
文摘Wind-photovoltaic(PV)-hydrogen-storage multi-agent energy systems are expected to play an important role in promoting renewable power utilization and decarbonization.In this study,a coordinated operation method was proposed for a wind-PVhydrogen-storage multi-agent energy system.First,a coordinated operation model was formulated for each agent considering peer-to-peer power trading.Second,a coordinated operation interactive framework for a multi-agent energy system was proposed based on the theory of the alternating direction method of multipliers.Third,a distributed interactive algorithm was proposed to protect the privacy of each agent and solve coordinated operation strategies.Finally,the effectiveness of the proposed coordinated operation method was tested on multi-agent energy systems with different structures,and the operational revenues of the wind power,PV,hydrogen,and energy storage agents of the proposed coordinated operation model were improved by approximately 59.19%,233.28%,16.75%,and 145.56%,respectively,compared with the independent operation model.
基金The project was supported by the National Natural Science Foundation of China (No. 20272018) the Guangdong Natural Science Foundation (No. 04010458, 021166).
文摘Efficient electrophilic substitution reaction of indoles with various aromatic aldehydes were carried out with a catalytic amount of sodium hydrogensulfate monohydrate (NaHSO4·H20) in ionic liquid n-butylpyridinium tetrafluoroborate ([Bpy]BF4) to afford the corresponding bi(indolyl)methanes in excellent yields. The notable advantages of this protocol in terms of low cost of catalyst and ionic liquid, mild conditions, simple operation, short reaction time, high yields and recycling of the ionic liquid.
文摘The influences of misch metal (Mm) on the hydrogen storage properties of FeTi1. 3 alloy have been studied in detail. The results show that the activation behavior of the alloy can be improved dramatically when a small quantity of Mm is added. It suggested that this activation behavior is due to the cracks, which was produced in the FeTi matrix by the expansion of misch metal inclusions coming from preferential hydrogen absorption. As a result, FeTi phase with fresh oxide-free surfaces through which hydrogen can be absorbed easily is provided. In addition, hydrogen storage properties of alloy can be influenced by Mm content. The results show that the overall hydrogen storage properties of FeTi1.3 + 6. 0% Mm alloy are the best among all alloys studied.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金financially supported by the National Natural Science Foundation of China(Nos.21171018 and 51271021)the State Key Laboratory for Advanced Metals and Materials。
文摘This study investigated the microstructure and hydrogen absorption properties of a rare-earth high-entropy alloy(HEA),YGdTbDyHo.Results indicated that the YGdTbDyHo alloy had a microstructure of equiaxed grains,with the alloy elements distributed homogeneously.Upon hydrogen absorption,the phase structure of the HEA changed from a solid solution with an hexagonal-close-packed(HCP)structure to a high-entropy hydride with an faced-centered-cubic(FCC)structure without any secondary phase precipitated.The alloy demonstrated a maximum hydrogen storage capacity of 2.33 H/M(hydrogen atom/metal atom)at 723 K,with an enthalpy change(ΔH)of-141.09 kJ·mol^(-1)and an entropy change(ΔS)of-119.14 J·mol^(-1)·K^(-1).The kinetic mechanism of hydrogen absorption was hydride nucleation and growth,with an apparent activation energy(E_(a))of 20.90 kJ·mol^(-1).Without any activation,the YGdTbDyHo alloy could absorb hydrogen quickly(180 s at 923 K)with nearly no incubation period observed.The reason for the obtained value of 2.33 H/M was that the hydrogen atoms occupied both tetrahedral and octahedral interstices.These results demonstrate the potential application of HEAs as a high-capacity hydrogen storage material with a large H/M ratio,which can be used in the deuterium storage field.
文摘A hydrogen energy storage system(HESS)is one of the many risingmodern green innovations,using excess energy to generate hydrogen and storing it for various purposes.With that,there have been many discussions about commercializing HESS and improving it further.However,the design and sizing process can be overwhelming to comprehend with various sources to examine,and understanding optimal design methodologies is crucial to optimize a HESS design.With that,this review aims to collect and analyse a wide range of HESS studies to summarise recent studies.Two different collections of studies are studied,one was sourced by the main author for preliminary readings,and another was obtained via VOSViewer.The findings from the Web of Science platform were also examined for amore comprehensive understanding.Major findings include the People’sRepublic of China has been active in HESS research,as most works and active organizations originate from this country.HESS has been mainly researched to support power generation and balance load demands,with financial analysis being the common scope of analysis.MATLAB is a common tool used for HESS design,modelling,and optimization as it can handle complex calculations.Artificial neural network(ANN)has the potential to be used to model the HESS,but additional review is required as a formof future work.From a commercialization perspective,pressurized hydrogen tanks are ideal for hydrogen storage in a HESS,but other methods can be considered after additional research and development.From this review,it can be implied that modelling works will be the way forward for HESS research,but extensive collaborations and additional review are needed.Overall,this review summarized various takeaways that future research works on HESS can use.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
基金supported by the National Natural Science Foundation of China(Nos.T2222013 and 52073203)Tianjin Natural Science Foundation(No.22JCQNJC01040)the State Key Laboratory of Molecular Engineering of Polymers(Fudan University)(No.K2024-19).
文摘Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchability, low hysteresis, self-adhesion, andexcellent antifreezing performance, remains an unmet challenge. In this respect, zwitterionic hydrogels have emerged asideal material candidates for breaking through the above dilemma. The mechanical properties of most reported zwitterionichydrogels, however, are relatively poor, significantly restricting their use under load-bearing conditions. Traditional improve-ment approaches often involve complex preparation processes, making large-scale production challenging. Additionally,zwitterionic hydrogels prepared with chemical crosslinkers are typically fragile and prone to irreversible deformation underlarge strains, resulting in the slow recovery of structure and function. To fundamentally enhance the mechanical properties ofpure zwitterionic hydrogels, the most effective approach is the regulation of the chemical structure of zwitterionic monomersthrough a targeted design strategy. This study employed a novel zwitterionic monomer carboxybetaine urethane acrylate(CBUTA), which contained one urethane group and one carboxybetaine group on its side chain. Through the direct polym-erization of ultrahigh concentration monomer solutions without adding any chemical crosslinker, we successfully developedpure zwitterionic supramolecular hydrogels with significantly enhanced mechanical properties, self-adhesive behavior, andantifreezing performance. Most importantly, the resultant zwitterionic hydrogels exhibited high tensile strength and tough-ness and displayed ultralow hysteresis under strain conditions up to 1100%. This outstanding performance was attributedto the unique liquid–liquid phase separation phenomenon induced by the ultrahigh concentration of CBUTA monomers inan aqueous solution, as well as the enhanced polymer chain entanglement and the strong hydrogen bonds between urethanegroups on the side chains. The potential application of hydrogels in strain sensors and high-performance triboelectric nano-generators was further explored. Overall, this work provides a promising strategy for developing pure zwitterionic hydrogelsfor flexible strain sensors and self-powered electronic devices.
基金financially National Key R&D Program of China(No.2022YFA1504800)National Natural Science Foundation of China(Grant No.22325405,22372160,22321002)+1 种基金Liaoning Revitalization Talents Program(XLYC1807207)DICP I202104。
文摘The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.
文摘Green hydrogen is the most promising option and a two in one remedy that resolve the problem of both energy crisis and environmental pollution.Wide band gap semiconductors(WBG)(E_(g)>2 eV)are the most prominent and leading catalytic materials in both electro and photocatalytic water splitting(WSR);two sustainable methods of green hydrogen production.WBGs guarantee long life time of photo charge carriers and thereby surface availability of electrons and holes.Therefore,WBG(with appropriate VB-CB potential)along with small band gap materials or sensitizers can yield extraordinary photocatalytic system for hydrogen production under solar light.The factors such as,free energy of hydrogen adsorption(ΔGH^(*))close to zero,high electron mobility,great thermal as well as electro chemical stability and high tunability make WBG an interesting and excellent catalyst in electrolysis too.Taking into account the current relevance and future scope,the present review article comprehends different dimensions of WBG materials as an electro/photo catalyst for hydrogen evolution reaction.Herein WBG semiconductors are presented under various classes;viz.II-VI,III-V,III-VI,lanthanide oxides,transition metal based systems,carbonaceous materials and other systems such as SiC and MXenes.Catalytic properties of WBGs favorable for hydrogen production are then reviewed.A detailed analysis on relationship between band structure and activity(electro,photo and photo-electrochemical WSR)is performed.The challenges involved in these reactions as well as the direction of advancement in WBG based catalysis are also debated.By virtue of this article authors aims to guideline and promote the development of new WBG based electro/photocatalyst for HER and other applications.
基金supported by the National Natural Science Foundation of China(Nos.51971199 and 51771171).
文摘The magnesium based metal hydrogen storage composite system Mg(NH_(2))_(2)-2LiH has a theoretical hydro-gen storage capacity of 5.6 wt.%and is a promising hydrogen storage material for vehicles.However,its application is limited due to serious thermodynamic and kinetic barriers.Introducing efficient catalysts is an effective method to improve the hydrogen storage performance of Mg(NH_(2))_(2)-2LiH.This article in-vestigates for the first time the use of nano rare earth oxide CeO_(2)(~44.5 nm)as an efficient modifier,achieving comprehensive regulation of the hydrogen storage performance of Mg(NH_(2))_(2)-2LiH composite system through oxygen vacancy driven catalysis.The modification mechanism of nano CeO_(2) is also sys-tematically studied using density functional theory(DFT)calculations and experimental results.Research has shown that the comprehensive hydrogen storage performance of the Mg(NH_(2))_(2)-2LiH-5 wt.%CeO_(2) composite system is optimal,with high hydrogen absorption and desorption kinetics and reversible per-formance.The initial hydrogen absorption and desorption temperatures of the composite system were significantly reduced from 110/130℃to 65/80℃,and the release of by-product ammonia was signifi-cantly inhibited.Under the conditions of 170℃/50 min and 180℃/100 min,4.37 wt.%of hydrogen can be rapidly absorbed and released.After 10 cycles of hydrogen release,the hydrogen cycle retention rate increased from 85%to nearly 100%.Further mechanistic studies have shown that the nano CeO_(2-x) gen-erated in situ during hydrogen evolution can effectively weaken the Mg-N and N-H bonds of Mg(NH_(2))_(2),exhibiting good catalytic effects.Meanwhile,oxygen vacancies provide a fast pathway for the diffusion of hydrogen atoms in the composite system.In addition,nano CeO_(2-x) can effectively inhibit the polycrys-talline transformation of the hydrogen evolving product Li_(2)MgN_(2)H_(2) in the system at high temperatures,reducing the difficulty of re-hydrogenation of the system.This study provides an innovative perspective for the efficient modification of magnesium based metal hydrogen storage composite materials using rare earth based catalysts,and also provides a reference for regulating the comprehensive hydrogen storage performance of hydrogen storage materials using rare earth catalysts with oxygen vacancies.
基金supported by the Key-Area Research and Development Program of Guangdong Province(No.2023B0909060001)the National Natural Science Foundation of China(No.52271213)。
文摘This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance.
基金supported by the National Natural Science Foundation of China(22302019)the Changzhou Sci&Tech Program(CJ20220214).
文摘It is very appealing that 5-hydroxymethylfurfural(HMF)is electrocatalytical oxidized as 2,5-furandicarboxylic acid(FDCA)linking to non-classical cathodic hydrogen(H_(2))production.However,the electrocatalysts for electrocatalytic HMF oxidative reaction(e-HMFOR)have been facing low Faradaic efficiency(FE)and high water splitting voltage.Herein,we propose a strategy of the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction by constructing a Co-Ni paired site,where the Co site is in charge of adsorbing for HMF while the electrons are transferred to the Ni site,thus giving the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction superior electrocata lytic performances for e-HMFOR and water splitting.By optimizing conditions,the NiSeO_(3)@(CoSeO_(3))_(4)heterojunction has high conversion of 99.7%,high selectivity of 99.9%,and high FE of 98.4%at 1.3 V,as well as low cell voltage of 1.31 V at 10 mA cm^(-2)in 1 M KOH+0.1 M HMF.This study offers a potential insight for e-HMFOR to high value-added FDCA coupling water splitting to produce H_(2)in an economical manner.
文摘Ulcerative colitis has baffled researchers since the early 20th century.The pre-vailing explanation attributes the chronic recurring episodes of bloody diarrhea and abdominal pain to some form of immune abnormality,despite the lack of supporting evidence.This highlights the critical need for innovative research directions and methodologies to uncover the cause and develop a cure for this disease.By analyzing existing data from less than a dozen previously published studies,a novel,evidence-based pathogenesis was constructed,implicating colonic epithelial hydrogen peroxide as a causal factor in the development of this disease.This newly identified mechanism informed the creation of a ground-breaking class of therapeutics,known as reducing agents,which have demon-strated remarkable success in resolving colonic inflammation and restoring colonic health in patients with refractory ulcerative colitis.This paper outlines the timeline of these publications and reinterprets the findings within the context of contemporary biomedical science.
基金financially supported by the National Natural Science Foundation of China(Nos.51971199 and 51771171)
文摘The Li-Mg-N-H(Mg(NH_(2))_(2)-2LiH)system,as a high-capacity Mg-based metal hydrogen storage material(5.6 wt%),has broad prospects for in vehicle hydrogen storage applications,but it still has high hydrogen ab/desorption barriers.To improve its hydrogen storage performance,a nanohydrogen storage alloy was innovatively combined with Mg(NH_(2))_(2)-2LiH,AB5 type nanohydrogen storage alloy LaNi_(5)was prepared by co-precipitation method.Nano LaNi_(5)and single-walled carbon nanotubes(SWCNTs)were co-doped into the Mg(NH_(2))_(2)-2LiH system at a ratio of 10 wt%and 2 wt%,significantly enhancing the hydrogen storage performance of Mg(NH_(2))_(2)-2LiH.The initial hydrogen ab/desorption temperatures of the co-doped system decreased from110/130℃to 45/85℃.The release of by-product ammonia is significantly inhibited.4.73 wt% H_(2)can be ab/desorption in 150 min at 180/170℃.Cycle tests show that the co-doped system can still maintain a hydrogen storage capacity of 4.75 wt% after ten hydrogen release cycles.Mechanism and density functional theory study have shown that during the hydrogen release process,partially hydrogenated LaNi_(5)weakens the chemical bonding in Mg(NH_(2))_(2),promoted the dissociation of hydrogen from the Mg(NH_(2))_(2)-2LiH system,while playing a dual role of"hydrogen overflow"and"hydrogen pump".SWCNTs act as auxiliary agents,helping to refine particle size and increase thermal conductivity.The synergistic effect of the two optimizes the comprehensive hydrogen storage performance of Mg(NH_(2))_(2)-2LiH.This study provides a new research method for improving the comprehensive hydrogen storage performance of Mg-based metal hydrogen storage materials using rare earth element catalysts.
基金Yijing Wang acknowledges the funding support of the National Key Research and Development Program of China(No.2021YFB4000604)the National Natural Science Foundation of China(No.52271220)+6 种基金the Higher Education Discipline Innovation Project(No.B12015)“the Fundamental Research Funds for the Central Universities”Huaiyu Shao acknowledges the funding support of the Multi-Year Research Grant(MYRG)from the University of Macao(No.MYRG2022-00105-IAPME)the Joint Scientific Research Project Funding by the National Natural Science Foundation of China and the Macao Science and Technology Development Fund(No.0090/2022/AFJ)the Macao Science and Technology Development Fund(FDCT)for funding No.006/2022/ALC of the Macao Centre for Research and Development in Advanced Materials(No.2022-2024)the Natural Science Foundation of Guangdong Province(Grant No.2023A1515010765)the Shenzhen-Hong Kong-Macao Science and Technology Innovation Project(Category C).
文摘Herein,we report the multi-metal atomic catalysts for solid-state dehydrogenation of MgH_(2).It aims to reveal the multi-element synergy in catalysts for solid-state hydrogen storage.The kinetic measurements and fitting reveal two mechanisms:one shows a maximum rate at the early stage,such as V and Cr;the other needs a temperature-sensitive preparation time for its maximum rate,such as Ni.The combina-tion of two catalyst components demonstrates the best kinetics:V and Cr boost the initial dehydrogena-tion,and Ni benefits the further hydrogen transfer which alleviates the rate of decay.This work provides guidelines for the design of multi-element doped catalysts for MgH_(2) dehydrogenation.
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB4000604)the National Natural Science Foundation of China (No. 52271220)+2 种基金the 111 Project (No. B12015)the Fundamental Research Funds for the Central UniversitiesHaihe Laboratory of Sustainable Chemical Transformations, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Science Research and Technology Development Project of Guilin (No. 20210102-4)
文摘Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.
基金supported by the National Natural Science Foundation of China(32072757 and U21A20250)。
文摘Yaks are well-adapted to the harsh environment of the Tibetan Plateau,and they emit less enteric methane(CH_(4))and digest poor-quality forage better than cattle.To examine the potential of yak rumen inoculum to mitigate CH_(4)production and improve digestibility in cattle,we incubated substrate with rumen inoculum from yak(YRI)and cattle(CRI)in vitro in five ratios(YRI:CRI):(1)0:100(control),(2)25:75,(3)50:50,(4)75:25 and(5)100:0 for 72 h.The YRI:CRI ratios of 50:50,75:25 and 100:0 produced less total gas and CH_(4)and accumulated less hydrogen(H_(2))than0:100(control)at most time points.From 12 h onwards,there was a linear decrease(P<0.05)in carbon dioxide(CO_(2))production with increasing YRI:CRI ratio.At 72 h,the ratios of 50:50 and 75:25 had higher dry matter(+7.71%and+4.11%,respectively),as well as higher acid detergent fiber digestibility(+15.5%and+7.61%,respectively),when compared to the 0:100 ratio(P<0.05).Increasing the proportion of YRI generally increased total VFA concentrations,and,concomitantly,decreased the proportion of metabolic hydrogen([2H])incorporated into CH_(4),and decreased the recovery of[2H].The lower[2H]recovery indicates unknown[2H]sinks in the culture.Estimated Gibbs free energy changes(ΔG)for reductive acetogenesis were negative,indicating the thermodynamic feasibility of this process.It would be beneficial to identify:1)the alternative[2H]sinks,which could help mitigate CH_(4)emission,and 2)core microbes involved in fiber digestion.This experiment supported lower CH_(4)emission and greater nutrient digestibility of yaks compared to cattle.Multi-omics combined with microbial culture technologies developed in recent years could help to better understand fermentation differences among species.