The synthesis of atomic-scale metal catalysts is a promising but very challenging project. In this work, we successfully fabricated a hybrid catalyst of PL/Ni(OH)2 with atomic-scale Pt clusters uniformly decorated o...The synthesis of atomic-scale metal catalysts is a promising but very challenging project. In this work, we successfully fabricated a hybrid catalyst of PL/Ni(OH)2 with atomic-scale Pt clusters uniformly decorated on porous Ni(OH)2 nanowires (NWs) via a facile room-temperature synthesis strategy. The as-obtained Ptc/Ni(OH)2 catalyst exhibits highly efficient hydrogen evolution reaction (HER) performance under basic conditions. In 0.1moll-1 KOH, the Ptc/Ni(OH)2 has an onset overpotential of -0 mV vs. RHE, and a significantly low overpotential of 32 mV at a current density of 10mAcm-2, lower than that of the com- mercial 20% Pt/C (58 mV). The mass current density data illustrated that the PL/Ni(OH)2 reached a high current den- sity of 6.34Amg^-1i at an overpotential of 50 mV, which was approximately 28 times higher than that of the commercial Pt/C (0.223Amg^-1i) at the same overpotential, proving the high-efficiency electrocatalytic activity of the as-obtained Ptc/Ni(OH)2 for HER under alkaline conditions.展开更多
基金financial support from the National Natural Science Foundation of China(21425103,21673280 and 11374039)
文摘The synthesis of atomic-scale metal catalysts is a promising but very challenging project. In this work, we successfully fabricated a hybrid catalyst of PL/Ni(OH)2 with atomic-scale Pt clusters uniformly decorated on porous Ni(OH)2 nanowires (NWs) via a facile room-temperature synthesis strategy. The as-obtained Ptc/Ni(OH)2 catalyst exhibits highly efficient hydrogen evolution reaction (HER) performance under basic conditions. In 0.1moll-1 KOH, the Ptc/Ni(OH)2 has an onset overpotential of -0 mV vs. RHE, and a significantly low overpotential of 32 mV at a current density of 10mAcm-2, lower than that of the com- mercial 20% Pt/C (58 mV). The mass current density data illustrated that the PL/Ni(OH)2 reached a high current den- sity of 6.34Amg^-1i at an overpotential of 50 mV, which was approximately 28 times higher than that of the commercial Pt/C (0.223Amg^-1i) at the same overpotential, proving the high-efficiency electrocatalytic activity of the as-obtained Ptc/Ni(OH)2 for HER under alkaline conditions.