Hydrogenative rearrangement of biomas s-derived furfurals(furfural and 5-hydroxymethyl furfural) to C_(5) cyclic compounds(such as cyclopentanones and cyclopentanols) offers an expedient reaction route for acquiring O...Hydrogenative rearrangement of biomas s-derived furfurals(furfural and 5-hydroxymethyl furfural) to C_(5) cyclic compounds(such as cyclopentanones and cyclopentanols) offers an expedient reaction route for acquiring O-containing value-added chemicals thereby replacing the traditional petroleum-based approaches.The scope for developing efficient bifunctional catalysts and establishing mild reaction conditions for upgrading furfurals to cyclic compounds has stimulated immense deliberation in recent years.Extensive efforts have been made toward developing catalysts for multiple tandem conversions,including those with various metals and supports.In this scientific review,we aim to summarize the research progress on the synergistic effect of the metal-acid sites,including simple metal-supported acidic supports,adjacent metal acid sites-supported catalysts,and in situ H_(2)-modified bifunctional catalysts.Distinctively,the catalytic performance,catalytic mechanism,and future challenges for the hydrogenative rearrangement are elaborated in detail.The methods highlighted in this review promote the development of C_(5) cyclic compound synthesis and provide insights to regulate bifunctional catalysis for other applications.展开更多
Enones are widely explored in synthetic chemistry as fundamental building blocks for a wide range of reactions and exhibit intriguing biological activities that are pivotal for drug discovery.The development of synthe...Enones are widely explored in synthetic chemistry as fundamental building blocks for a wide range of reactions and exhibit intriguing biological activities that are pivotal for drug discovery.The development of synthetic strategies for highly efficient preparation of enones thereby receives intense attention,in particular through the transition metal-catalyzed coupling reactions.Here,we describe a carbene-catalyzed cross dehydrogenative coupling(CDC)reaction that enables effective assembly of simple aldehydes and alkenes to afford a diverse set of enone derivatives.Mechanistically,the in situ generated aryl radical is pivotal to“activate”the alkene by forming an allyl radical through intermolecular hydrogen atom transfer(HAT)pathway and thus forging the carbon-carbon bond formation with aldehyde as the acyl synthon.Notably,our method represents the first example on the enone synthesis through coupling of“non-functionalized”aldehydes and alkenes as coupling partners,and offers a distinct organocatalytic pathway to the transition metal-catalyzed coupling transformations.展开更多
Azobenzene and its derivatives are key raw materials and it is an environmentally friendly method for the preparation of azobenzene by hydrogenative coupling of nitrobenzene. The development of nickel based catalyst f...Azobenzene and its derivatives are key raw materials and it is an environmentally friendly method for the preparation of azobenzene by hydrogenative coupling of nitrobenzene. The development of nickel based catalyst for organic transformations is of importance because of its relatively low cost and toxicity. In this work, we found that ethylenediamine can enrich the electron state of Ni and make the azobenzene easily desorb from the surface of the catalyst, which inhibits the hydrogenation of azobenzene to aniline. The selectivity of azobenzene is greatly improved. When the ratio of Ni and ethylenediamine is 1:10, the yield of the azobenzene can reach 95.5%.展开更多
Hydrogenative coupling of CO_(2)to ethanol presents a sustainable pathway for carbon neutralization,yet the fundamental active sites and reaction pathway/mechanism remain unclear.Here,we investigate CO_(2)hydrogenativ...Hydrogenative coupling of CO_(2)to ethanol presents a sustainable pathway for carbon neutralization,yet the fundamental active sites and reaction pathway/mechanism remain unclear.Here,we investigate CO_(2)hydrogenative coupling over Cu/CeO_(2-x)catalysts,achieving an optimal CO_(2)conversion of~5%and ethanol selectivity of~95%under 30 atm,H_(2)/CO_(2)=3,at 240℃,and gas hourly space velocity(GHSV)=120 mL·gcat^(-1)·h^(-1).We revealed that both Cu(I)and oxygen vacancies(Ov)serve as active sites,with turnover frequencies(TOFs)of 0.23 h^(-1)per Ov site and 3.97 h^(-1)per Cu(I)site,respectively.We also concluded that neither Cu(I)nor Ov can function independently;both Cu(I)and Ov are required for CO_(2)activation and ethanol formation.Operando Fourier-transform infrared(FTIR)spectroscopy and density functional theory(DFT)calculations identify CH_(2)OH^(*)and CH_(2)^(*)as key intermediates in the C-C coupling step.These findings establish a mechanistic framework for CO_(2)hydrogenative coupling and provide valuable insights for designing more efficient catalysts for ethanol synthesis from CO_(2)conversion.展开更多
For the metal-catalyzed asymmetric hydrogenation of α-substituted ketones,cis reductive products are generally obtained due to steric hindrance of substituents.Herein,an unprecedented trans reductive products were ob...For the metal-catalyzed asymmetric hydrogenation of α-substituted ketones,cis reductive products are generally obtained due to steric hindrance of substituents.Herein,an unprecedented trans reductive products were observed in palladium-catalyzed hydrogenative desymmetrization of cyclic and acyclic 1,3-diketones,providing the chiral trans β-hydroxy ketones with two adjacent stereocenters including one α-tertiary or quaternary stereocenter with high enantioselectivity and diastereoselectivity.Mechanistic studies and DFT calculations suggested that the rarely observed diastereoselectivity reversal is ascribed to the charge-charge interaction between the palladium and aromatic ring of the substrate,which could not only result in the reversal of the diastereoselectivity,but also improve the reactivity.展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor ...The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.展开更多
In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using at...In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using attenuated total reflectance Fourier-transform infrared spectroscopy(ATR-FTIR),the molecular configurations of surface carboxyl groups(COOH),free carboxyl(COOH_(f))and hydrogen-bonded carboxyl(COOH_(HB),were directly correlated with the polar component of surface energy(γ^(s,p)).By decomposing theγ^(s,p)values of the PAA thin films as a sum of the contributions of COOH_(f)and COOH_(H B),the intrinsic polar component of surface energy of COOH_(H B)(γ_(H B)^(s,p*))was quantified for the first time as 8.34 mN/m,significantly lower than that of COOH_(f)(γ_(f)^(s,p*)=34 mN/m).This result highlights that hydrogen bonding markedly reduces theγ^(s,p),providing a rational explanation for the relatively large water contact angle observed on PAA thin films.Furthermore,it establishes a thermodynamic basis for estimating the fraction of surface COOH_(H B)groups(f H B)from wettability measurements.Further extension of the model to carboxyl-terminated self-assembled monolayers(COOH-SAMs)revealed that surface COOH density(ΣCOOH)critically regulates wetting behavior:whenΣCOOH ranges from 4.30 to 5.25 nm^(-2),COOH groups predominantly exist in a free state and facilitate effective hydration layers,thereby promoting superhydrophilicity.Overall,this study not only establishes a unified thermodynamic framework linking surface COOH configurations to macroscopic wettability,but also validates its universality by extending it to COOH-SAMs systems,thereby providing a unified theoretical framework for the controllable design of hydrophilicity in various COOH-functionalized surfaces.展开更多
https://www.sciencedirect.com/journal/energy-and-buildings/vol/350/suppl/CV olume 350,1 January 2026[OA]( 1)Rooftop agrivoltaic powered onsite hydrogenp roduction for insulated gasochromic smart glazing and hydrogen v...https://www.sciencedirect.com/journal/energy-and-buildings/vol/350/suppl/CV olume 350,1 January 2026[OA]( 1)Rooftop agrivoltaic powered onsite hydrogenp roduction for insulated gasochromic smart glazing and hydrogen vehicles:A holistic approach to sustainabler esidential building by Shanza Neda Hussain,Aritra Ghosh,Article 116675 A bstract:The study focused on designing a sustainable buildingi nvolving rooftop agrivoltaics,advanced glazing technologies ando nsite hydrogen production for a residential property in Birmingham,UK where green hydrogen produced by harnessinge lectricity generated by agrivoltaics system on rooftop of the building is employed to change the transparency of vacuum gasochromic glazing and refuel hydrogen-powered fuel cell vehicle using storage hydrogen for a sustainable building approach.展开更多
Hydrogen energy development is transitioning from vision and plan-ning to widespread application.To date,more than 60 countries and regions have announced hydrogen energy development strategies focused on accelerating...Hydrogen energy development is transitioning from vision and plan-ning to widespread application.To date,more than 60 countries and regions have announced hydrogen energy development strategies focused on accelerating demonstration projects and real-world deployment.展开更多
Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphou...Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).展开更多
A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)...A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)S,metallic copper converts chalcopyrite into bornite(Cu_(5)FeS_(4)).However,the introduction of H_(2)S promotes the formation of chalcocite(Cu_(2)S)by altering the oxidation pathway of copper.Electrochemical analysis demonstrates that the presence of H₂S significantly reduces the corrosion potential of copper from 0.251 to−0.223 V(vs SHE),reaching the threshold necessary for the formation of Cu_(2)S.Nevertheless,excessive H_(2)S triggers sulfate reduction via the reaction of 8Cu+H_(2)SO_(4)+3H_(2)S=4Cu_(2)S+4H_(2)O(ΔG=−519.429 kJ/mol at 50℃),leading to inefficient copper utilization.展开更多
Molecular hydrogen(H2)demonstrates selective antioxidant and anti-inflammatory properties with therapeutic potential across musculoskeletal conditions including osteoarthritis,rheumatoid arthritis,exercise-induced mus...Molecular hydrogen(H2)demonstrates selective antioxidant and anti-inflammatory properties with therapeutic potential across musculoskeletal conditions including osteoarthritis,rheumatoid arthritis,exercise-induced muscle damage,chronic pain syndromes,tendinopathies,and muscle atrophy.This review critically evaluates preclinical and clinical evidence for H2 therapy and identifies research gaps.A comprehensive search of PubMed,EMBASE,and Cochrane Library(up to April 2025)yielded 45 eligible studies:25 preclinical and 20 clinical trials.Preclinical models consistently showed reductions in reactive oxygen species,inflammatory cytokines,and improved cell viability.Clinical trials reported symptomatic relief in osteoarthritis,decreased Disease Activity Score 28 in rheumatoid arthritis,and accelerated clearance of muscle damage markers.Delivery methods varied-hydrogen-rich water,gas inhalation,and saline infusion-hindering direct comparison.Mechanistic biomarkers were inconsistently reported,limiting understanding of target engagement.Common limitations included small sample sizes,short durations,and protocol heterogeneity.Despite these constraints,findings suggest H2 may serve as a promising adjunctive therapy via antioxidant,anti-inflammatory,and cytoprotective mechanisms.Future research should prioritize standardized delivery protocols,robust mechanistic endpoints,and longer-term randomized trials to validate clinical efficacy and optimize therapeutic strategies.展开更多
Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide g...Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide generation is limited by the competitive four-electron pathway.In this work,we report a noncovalent modulation strategy for the isolated CoN_(4) sites by metal-phthalocyanine molecules confinement,which boosts the two-electron oxygen reduction towards generating hydrogen peroxide.The confined Co-phthalocyanine molecules on CoN_(4) sites through π-π interactions induce the competitive*OOH adsorption between the two Co sites formed nanochannel.This noncovalent modulation contributes to the weakened*OOH binding on CoN_(4) sites and thus suppresses its further dissociation,achieving the maximum selectivity of 95% with high activity for H_(2)O_(2)production.This work shows that tailoring noncovalent interactions beyond the binding sites is a promising approach to modulate the local structure of isolated metal sites and related catalytic performance.展开更多
Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in ...Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to“dead weight.”Here,we synthesize an optimized N-doped porous carbon(rN-pC)without heavy metal as supporting scaffold to confine Mg/MgH_(2) nanoparticles(Mg/MgH_(2)@rN-pC).rN-pC with 60 wt%loading capacity of Mg(denoted as 60 Mg@rN-pC)can adsorb and desorb 0.62 wt%H_(2) on the rN-pC scaffold.The nanoconfined MgH_(2) can be chemically dehydrided at 175℃,providing~3.59 wt%H_(2) with fast kinetics(fully dehydrogenated at 300℃ within 15 min).This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds.Besides,the nanoconfined MgH_(2) formation enthalpy is reduced to~68 kJ mol^(−1) H_(2) from~75 kJ mol^(−1) H_(2) for pure MgH_(2).The composite can be also compressed to nanostructured pellets,with volumetric H_(2) density reaching 33.4 g L^(−1) after 500 MPa compression pressure,which surpasses the 24 g L^(−1) volumetric capacity of 350 bar compressed H_(2).Our approach can be implemented to the design of hybrid H_(2) storage materials with enhanced capacity and desorption rate.展开更多
To simultaneously improve the critical factors in photocatalytic H_(2)production,the population of active photogenerated electrons,the adsorption and activation of H_(2)O molecules,and the surface dehydrogenation effi...To simultaneously improve the critical factors in photocatalytic H_(2)production,the population of active photogenerated electrons,the adsorption and activation of H_(2)O molecules,and the surface dehydrogenation efficiency,we propose a synergistic strategy for TiO_(2)modification by combining transition metal(TM)doping and N-doped carbon(N-C)coating.The targeted Cr-TiO_(2)@N-C heterojunction exhibits dramatically enhanced H_(2)production under blue light irradiation,contrasting sharply with a negligible production by pristine TiO_(2).Comprehensive structural characterization and theoretical calculations confirm the uniform substitution of Cr into the TiO_(2)lattice,promoting the formation of adjacent oxygen vacancies(VO).The synergistic effect of Cr doping and VO extends the light absorption range into the visible region.The coated N-C layer facilitates the efficient separation of photogenerated charge carriers,boosting the population of active electrons.Critically,the combined action of VO and N-C layer enhances the adsorption and activation of H_(2)O molecules while effectively improving the subsequent surface dehydrogenation efficiency.Significantly,this strategy demonstrates broad universality:Analogous TM-TiO_(2)@N-C heterojunctions(TM=Mn,Co,Ni,Cu,and Zn)synthesized via the same approach all show substantially improved H_(2)production performance over pristine TiO_(2).展开更多
Hydrogen production by electrolysis of water is a key technology to achieve green hydrogen energy economy,but it relies on advanced catalyst materials with high efficiency,stability,and wide pH adaptability.In this st...Hydrogen production by electrolysis of water is a key technology to achieve green hydrogen energy economy,but it relies on advanced catalyst materials with high efficiency,stability,and wide pH adaptability.In this study,Ni,Ru,and Pt ternary metals were embedded into nitrogen-doped hollow carbon spheres(NHCSs)by hydrothermal tandem heat treatment to form ternary supported metal nanoparticles with high dispersion and ultra-small particle size(~1.3 nm),which realized efficient hydrogen evolution from multi-scenario electrocatalytic water splitting.In the whole pH range,the performance of NiRuPt/NHCSs is better than that of commercial Pt/C catalyst,and the overpotentials under alkaline,neutral,and acidic conditions are as low as 15.5,20.0,and 29.5 mV,respectively.Under industrial conditions,NiRuPt/NHCSs also have excellent hydrogen evolution reaction(HER)performance,achieving efficient electrolysis of seawater for hydrogen production,and achieving Ampere-level hydrogen production at low voltage(~1.76 V)on integrated membrane electrode assemblies.Density functional theory(DFT)calculations show that in the NiRuPt ternary metal,the Pt site is conducive to promoting the desorption of*H to form H_(2),the Ru site is conducive to promoting the capture of H_(2)O,and the Ni site is conducive to promoting the dissociation of H_(2)O.Therefore,the formed NiRuPt ternary metal synergistically promotes multi-scenario efficient electrolysis of water to produce hydrogen.This study provides a new idea for the design of multi-component metal/carbon-based composite catalysts,and promotes the development of non-noble metal/noble metal composite catalysts in hydrogen production by electrolysis of water.展开更多
Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via lo...Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.展开更多
The integration of carbon dots(CDs)with graphitic carbon nitride(g-C_(3)N_(4))has emerged as a promising approach to enhance photocatalytic hydrogen(H_(2))evolution.Despite significant progress,critical challenges rem...The integration of carbon dots(CDs)with graphitic carbon nitride(g-C_(3)N_(4))has emerged as a promising approach to enhance photocatalytic hydrogen(H_(2))evolution.Despite significant progress,critical challenges remain in achieving broad visiblelight absorption and suppressing charge recombination.In this work,we developed a series of photocatalysts through in situ embedding of red-emissive CDs(R-CDs)into g-C_(3)N_(4)(RCN)with precisely controlled loading amounts.Systematic characterization revealed that the R-CDs incorporation simultaneously addresses two fundamental limitations:(1)extending the light absorption edge to 800 nm,and(2)acting as an electron acceptor,facilitating charge separation.The optimized RCN composite demonstrates exceptional H_(2)evolution activity(1.87 mmol·g^(-1)·h^(-1),wavelength(λ)≥420 nm),representing a 3.3-fold enhancement over pristine g-C_(3)N_(4).Remarkably,the apparent quantum efficiency(AQE)reaches 9.1% at 420 nm,while maintaining measurable activity beyond 475 nm,where unmodified g-C_(3)N_(4)shows negligible response.This study provides fundamental insights into band structure engineering and charge carrier management through rational design of CDs-modified semiconductor heterostructures.展开更多
In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperat...In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperature(T_(c))of 1D superconductors is low.In this work,we theoretically investigate the possible high T_(c) superconductivity of(5,5)carbon nanotube(CNT).The pristine(5,5)CNT is a Dirac semimetal and can be modulated into a semiconductor by full hydrogenation.Interestingly,by further hole doping,it can be regulated into a metallic state with the sp3-hybridized𝜎electrons metalized,and a giant Kohn anomaly appears in the optical phonons.The two factors together enhance the electron–phonon coupling,and lead to high-T_(c) superconductivity.When the hole doping concentration of hydrogenated-(5,5)CNT is 2.5 hole/cell,the calculated T_(c) is 82.3 K,exceeding the boiling point of liquid nitrogen.Therefore,the predicted hole-doped hydrogenated-(5,5)CNT provides a new platform for 1D high-T_(c) superconductivity and may have potential applications in 1D nanodevices.展开更多
基金support from the National Natural Science Foundation of China (Nos. 22178158, 52162014 and 22065024)Science and Technology Project of Education Department of Jiangxi Province (No. GJJ2200402)+3 种基金Jiangxi Provincial Natural Science Foundation (No. 20224BAB213023)the Outstanding Youth Science Fund Project of Jiangxi Province (No. 20224ACB213008)the Jiangxi Provincial Double Thousand Talents Plan-Youth Program (No. S2021GDQN0947)Natural Science Foundation of Chongqing (No. 2023NSCQ-MSX0052)
文摘Hydrogenative rearrangement of biomas s-derived furfurals(furfural and 5-hydroxymethyl furfural) to C_(5) cyclic compounds(such as cyclopentanones and cyclopentanols) offers an expedient reaction route for acquiring O-containing value-added chemicals thereby replacing the traditional petroleum-based approaches.The scope for developing efficient bifunctional catalysts and establishing mild reaction conditions for upgrading furfurals to cyclic compounds has stimulated immense deliberation in recent years.Extensive efforts have been made toward developing catalysts for multiple tandem conversions,including those with various metals and supports.In this scientific review,we aim to summarize the research progress on the synergistic effect of the metal-acid sites,including simple metal-supported acidic supports,adjacent metal acid sites-supported catalysts,and in situ H_(2)-modified bifunctional catalysts.Distinctively,the catalytic performance,catalytic mechanism,and future challenges for the hydrogenative rearrangement are elaborated in detail.The methods highlighted in this review promote the development of C_(5) cyclic compound synthesis and provide insights to regulate bifunctional catalysis for other applications.
基金funding supports from the National Natural Science Foundation of China(Nos.21732002,22061007,22071036,and 22207022)Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules,National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas),the starting grant of Guizhou University[No.(2022)47)]+10 种基金Department of Education,Guizhou Province[Qianjiaohe KY No.(2020)004]The 10 Talent Plan(Shicengci)of Guizhou Province(No.[2016]5649)Science and Technology Department of Guizhou Province(Nos.[Qiankehe-jichu-ZK[2022]zhongdian024],[2018]2802,[2019]1020,QKHJC-ZK[2022]-455)Department of Education of Guizhou Province(No.QJJ(2022)205)Program of Introducing Talents of Discipline to Universities of China(111 Program,No.D20023)at Guizhou UniversitySingapore National Research Foundation under its NRF Investigatorship(No.NRF-NRFI2016–06)Competitive Research Program(No.NRF-CRP22–2019–0002)Ministry of Education,Singapore,under its MOE Ac RF Tier 1 Award(Nos.RG7/20,RG70/21)MOE AcRF Tier 2(No.MOE2019-T2–2–117)MOE AcRF Tier 3 Award(No.MOE2018-T3–1–003)a Chair Professorship Grant,and Nanyang Technological University。
文摘Enones are widely explored in synthetic chemistry as fundamental building blocks for a wide range of reactions and exhibit intriguing biological activities that are pivotal for drug discovery.The development of synthetic strategies for highly efficient preparation of enones thereby receives intense attention,in particular through the transition metal-catalyzed coupling reactions.Here,we describe a carbene-catalyzed cross dehydrogenative coupling(CDC)reaction that enables effective assembly of simple aldehydes and alkenes to afford a diverse set of enone derivatives.Mechanistically,the in situ generated aryl radical is pivotal to“activate”the alkene by forming an allyl radical through intermolecular hydrogen atom transfer(HAT)pathway and thus forging the carbon-carbon bond formation with aldehyde as the acyl synthon.Notably,our method represents the first example on the enone synthesis through coupling of“non-functionalized”aldehydes and alkenes as coupling partners,and offers a distinct organocatalytic pathway to the transition metal-catalyzed coupling transformations.
基金the National Natural Science Foundation of China (No. 21603235)the Recruitment Program of Global Youth Experts of China
文摘Azobenzene and its derivatives are key raw materials and it is an environmentally friendly method for the preparation of azobenzene by hydrogenative coupling of nitrobenzene. The development of nickel based catalyst for organic transformations is of importance because of its relatively low cost and toxicity. In this work, we found that ethylenediamine can enrich the electron state of Ni and make the azobenzene easily desorb from the surface of the catalyst, which inhibits the hydrogenation of azobenzene to aniline. The selectivity of azobenzene is greatly improved. When the ratio of Ni and ethylenediamine is 1:10, the yield of the azobenzene can reach 95.5%.
基金supported in part by the U.S.National Science Foundation under grant(No.OIA-1946231)the Louisiana Board of Regents for the Louisiana Materials Design Alliance(LAMDA)Y.W.,P.L.H.,F.Y.acknowledge financial support from Y.W.’s Herbert L.Stiles Professorship.
文摘Hydrogenative coupling of CO_(2)to ethanol presents a sustainable pathway for carbon neutralization,yet the fundamental active sites and reaction pathway/mechanism remain unclear.Here,we investigate CO_(2)hydrogenative coupling over Cu/CeO_(2-x)catalysts,achieving an optimal CO_(2)conversion of~5%and ethanol selectivity of~95%under 30 atm,H_(2)/CO_(2)=3,at 240℃,and gas hourly space velocity(GHSV)=120 mL·gcat^(-1)·h^(-1).We revealed that both Cu(I)and oxygen vacancies(Ov)serve as active sites,with turnover frequencies(TOFs)of 0.23 h^(-1)per Ov site and 3.97 h^(-1)per Cu(I)site,respectively.We also concluded that neither Cu(I)nor Ov can function independently;both Cu(I)and Ov are required for CO_(2)activation and ethanol formation.Operando Fourier-transform infrared(FTIR)spectroscopy and density functional theory(DFT)calculations identify CH_(2)OH^(*)and CH_(2)^(*)as key intermediates in the C-C coupling step.These findings establish a mechanistic framework for CO_(2)hydrogenative coupling and provide valuable insights for designing more efficient catalysts for ethanol synthesis from CO_(2)conversion.
基金supported by the National Natural Science Foundation of China(21871255,21532006,21873096)Chinese Academy of Sciences(XDB17020300,XDB17010200)
文摘For the metal-catalyzed asymmetric hydrogenation of α-substituted ketones,cis reductive products are generally obtained due to steric hindrance of substituents.Herein,an unprecedented trans reductive products were observed in palladium-catalyzed hydrogenative desymmetrization of cyclic and acyclic 1,3-diketones,providing the chiral trans β-hydroxy ketones with two adjacent stereocenters including one α-tertiary or quaternary stereocenter with high enantioselectivity and diastereoselectivity.Mechanistic studies and DFT calculations suggested that the rarely observed diastereoselectivity reversal is ascribed to the charge-charge interaction between the palladium and aromatic ring of the substrate,which could not only result in the reversal of the diastereoselectivity,but also improve the reactivity.
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
文摘The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.
文摘In this study,polyacrylic acid(PAA)films were employed as a model system,and a series of PAA films with tunable water wettability was systematically prepared by varying molecular weight and curing temperature.Using attenuated total reflectance Fourier-transform infrared spectroscopy(ATR-FTIR),the molecular configurations of surface carboxyl groups(COOH),free carboxyl(COOH_(f))and hydrogen-bonded carboxyl(COOH_(HB),were directly correlated with the polar component of surface energy(γ^(s,p)).By decomposing theγ^(s,p)values of the PAA thin films as a sum of the contributions of COOH_(f)and COOH_(H B),the intrinsic polar component of surface energy of COOH_(H B)(γ_(H B)^(s,p*))was quantified for the first time as 8.34 mN/m,significantly lower than that of COOH_(f)(γ_(f)^(s,p*)=34 mN/m).This result highlights that hydrogen bonding markedly reduces theγ^(s,p),providing a rational explanation for the relatively large water contact angle observed on PAA thin films.Furthermore,it establishes a thermodynamic basis for estimating the fraction of surface COOH_(H B)groups(f H B)from wettability measurements.Further extension of the model to carboxyl-terminated self-assembled monolayers(COOH-SAMs)revealed that surface COOH density(ΣCOOH)critically regulates wetting behavior:whenΣCOOH ranges from 4.30 to 5.25 nm^(-2),COOH groups predominantly exist in a free state and facilitate effective hydration layers,thereby promoting superhydrophilicity.Overall,this study not only establishes a unified thermodynamic framework linking surface COOH configurations to macroscopic wettability,but also validates its universality by extending it to COOH-SAMs systems,thereby providing a unified theoretical framework for the controllable design of hydrophilicity in various COOH-functionalized surfaces.
文摘https://www.sciencedirect.com/journal/energy-and-buildings/vol/350/suppl/CV olume 350,1 January 2026[OA]( 1)Rooftop agrivoltaic powered onsite hydrogenp roduction for insulated gasochromic smart glazing and hydrogen vehicles:A holistic approach to sustainabler esidential building by Shanza Neda Hussain,Aritra Ghosh,Article 116675 A bstract:The study focused on designing a sustainable buildingi nvolving rooftop agrivoltaics,advanced glazing technologies ando nsite hydrogen production for a residential property in Birmingham,UK where green hydrogen produced by harnessinge lectricity generated by agrivoltaics system on rooftop of the building is employed to change the transparency of vacuum gasochromic glazing and refuel hydrogen-powered fuel cell vehicle using storage hydrogen for a sustainable building approach.
文摘Hydrogen energy development is transitioning from vision and plan-ning to widespread application.To date,more than 60 countries and regions have announced hydrogen energy development strategies focused on accelerating demonstration projects and real-world deployment.
基金supported by the National Natural Science Foundation of China(22175136)the State Key Laboratory of Electrical Insulation and Power Equipment(EIPE23127)the Fundamental Research Funds for the Central Universities(xtr052024009).
文摘Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation.However,the requirement of highly pure H_(2)for re-hydrogenation limits its wide application.Here,amorphous Al_(2)O_(3)shells(10 nm)were deposited on the surface of highly active hydrogen storage material particles(MgH_(2)-ZrTi)by atomic layer deposition to obtain MgH_(2)-ZrTi@Al_(2)O_(3),which have been demonstrated to be air stable with selective adsorption of H_(2)under a hydrogen atmosphere with different impurities(CH_(4),O_(2),N_(2),and CO_(2)).About 4.79 wt%H_(2)was adsorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)at 75℃under 10%CH_(4)+90%H_(2)atmosphere within 3 h with no kinetic or density decay after 5 cycles(~100%capacity retention).Furthermore,about 4 wt%of H_(2)was absorbed by MgH_(2)-ZrTi@10nmAl_(2)O_(3)under 0.1%O_(2)+0.4%N_(2)+99.5%H_(2)and 0.1%CO_(2)+0.4%N_(2)+99.5%H_(2)atmospheres at 100℃within 0.5 h,respectively,demonstrating the selective hydrogen absorption of MgH_(2)-ZrTi@10nmAl_(2)O_(3)in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere.The absorption and desorption curves of MgH_(2)-ZrTi@10nmAl_(2)O_(3)with and without absorption in pure hydrogen and then in 21%O_(2)+79%N_(2)for 1 h were found to overlap,further confirming the successful shielding effect of Al_(2)O_(3)shells against O_(2)and N_(2).The MgH_(2)-ZrTi@10nmAl_(2)O_(3)has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH_(4),O_(2),N_(2),and CO_(2).
基金financially supported by the National Key Research and Development Program of China (No. 2022YFC2105300)。
文摘A series of leaching and electrochemical experiments were conducted to elucidate the critical role of hydrogen sulfide(H_(2)S)in copper-driven reduction of chalcopyrite.Results demonstrate that in the absence of H_(2)S,metallic copper converts chalcopyrite into bornite(Cu_(5)FeS_(4)).However,the introduction of H_(2)S promotes the formation of chalcocite(Cu_(2)S)by altering the oxidation pathway of copper.Electrochemical analysis demonstrates that the presence of H₂S significantly reduces the corrosion potential of copper from 0.251 to−0.223 V(vs SHE),reaching the threshold necessary for the formation of Cu_(2)S.Nevertheless,excessive H_(2)S triggers sulfate reduction via the reaction of 8Cu+H_(2)SO_(4)+3H_(2)S=4Cu_(2)S+4H_(2)O(ΔG=−519.429 kJ/mol at 50℃),leading to inefficient copper utilization.
文摘Molecular hydrogen(H2)demonstrates selective antioxidant and anti-inflammatory properties with therapeutic potential across musculoskeletal conditions including osteoarthritis,rheumatoid arthritis,exercise-induced muscle damage,chronic pain syndromes,tendinopathies,and muscle atrophy.This review critically evaluates preclinical and clinical evidence for H2 therapy and identifies research gaps.A comprehensive search of PubMed,EMBASE,and Cochrane Library(up to April 2025)yielded 45 eligible studies:25 preclinical and 20 clinical trials.Preclinical models consistently showed reductions in reactive oxygen species,inflammatory cytokines,and improved cell viability.Clinical trials reported symptomatic relief in osteoarthritis,decreased Disease Activity Score 28 in rheumatoid arthritis,and accelerated clearance of muscle damage markers.Delivery methods varied-hydrogen-rich water,gas inhalation,and saline infusion-hindering direct comparison.Mechanistic biomarkers were inconsistently reported,limiting understanding of target engagement.Common limitations included small sample sizes,short durations,and protocol heterogeneity.Despite these constraints,findings suggest H2 may serve as a promising adjunctive therapy via antioxidant,anti-inflammatory,and cytoprotective mechanisms.Future research should prioritize standardized delivery protocols,robust mechanistic endpoints,and longer-term randomized trials to validate clinical efficacy and optimize therapeutic strategies.
基金financially supported by the National Natural Science Foundation of China(No.U21A2077)the Natural Science Foundation of Shandong Province(Nos.ZR2022JQ08 and 2023HWYQ-028)+4 种基金the Taishan Scholar Project Foundation of Shandong Province(Nos.tsqn202211028 and tsqn202306080)the City University of Hong Kong(Nos.9020005,9610663,and 7020103)ITF-RTH-Global STEM Professorship(No.9446008)Hong Kong Branch of National Precious Metals Material Engineering Research Center—ITC FundGeneral Research Fund(No.9043720)from the Research Grants Council of Hong Kong SAR,China.
文摘Electrosynthesis of hydrogen peroxide through the two-electron oxygen reduction pathway provides a crucial alternative to the energy-intensive anthraquinone process.Nevertheless,the efficicency for hydrogen peroxide generation is limited by the competitive four-electron pathway.In this work,we report a noncovalent modulation strategy for the isolated CoN_(4) sites by metal-phthalocyanine molecules confinement,which boosts the two-electron oxygen reduction towards generating hydrogen peroxide.The confined Co-phthalocyanine molecules on CoN_(4) sites through π-π interactions induce the competitive*OOH adsorption between the two Co sites formed nanochannel.This noncovalent modulation contributes to the weakened*OOH binding on CoN_(4) sites and thus suppresses its further dissociation,achieving the maximum selectivity of 95% with high activity for H_(2)O_(2)production.This work shows that tailoring noncovalent interactions beyond the binding sites is a promising approach to modulate the local structure of isolated metal sites and related catalytic performance.
基金supported by the National Key R&D Program of China(2022YFB3803700)National Natural Science Foundation of China(52171186)+1 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)support from“Zhiyuan Honor Program”for doctoral students,Shanghai Jiao Tong University.
文摘Nanoconfinement is a promising approach to simultaneously enhance the thermodynamics,kinetics,and cycling stability of hydrogen storage materials.The introduction of supporting scaffolds usually causes a reduction in the total hydrogen storage capacity due to“dead weight.”Here,we synthesize an optimized N-doped porous carbon(rN-pC)without heavy metal as supporting scaffold to confine Mg/MgH_(2) nanoparticles(Mg/MgH_(2)@rN-pC).rN-pC with 60 wt%loading capacity of Mg(denoted as 60 Mg@rN-pC)can adsorb and desorb 0.62 wt%H_(2) on the rN-pC scaffold.The nanoconfined MgH_(2) can be chemically dehydrided at 175℃,providing~3.59 wt%H_(2) with fast kinetics(fully dehydrogenated at 300℃ within 15 min).This study presents the first realization of nanoconfined Mg-based system with adsorption-active scaffolds.Besides,the nanoconfined MgH_(2) formation enthalpy is reduced to~68 kJ mol^(−1) H_(2) from~75 kJ mol^(−1) H_(2) for pure MgH_(2).The composite can be also compressed to nanostructured pellets,with volumetric H_(2) density reaching 33.4 g L^(−1) after 500 MPa compression pressure,which surpasses the 24 g L^(−1) volumetric capacity of 350 bar compressed H_(2).Our approach can be implemented to the design of hybrid H_(2) storage materials with enhanced capacity and desorption rate.
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJA150003)the Xuzhou Key Research and Development Program(Social Development)(No.KC23298)+1 种基金the National Natural Science Foundation of China(No.22271122)Basic Research Program of Jiangsu(No.BK20253049).
文摘To simultaneously improve the critical factors in photocatalytic H_(2)production,the population of active photogenerated electrons,the adsorption and activation of H_(2)O molecules,and the surface dehydrogenation efficiency,we propose a synergistic strategy for TiO_(2)modification by combining transition metal(TM)doping and N-doped carbon(N-C)coating.The targeted Cr-TiO_(2)@N-C heterojunction exhibits dramatically enhanced H_(2)production under blue light irradiation,contrasting sharply with a negligible production by pristine TiO_(2).Comprehensive structural characterization and theoretical calculations confirm the uniform substitution of Cr into the TiO_(2)lattice,promoting the formation of adjacent oxygen vacancies(VO).The synergistic effect of Cr doping and VO extends the light absorption range into the visible region.The coated N-C layer facilitates the efficient separation of photogenerated charge carriers,boosting the population of active electrons.Critically,the combined action of VO and N-C layer enhances the adsorption and activation of H_(2)O molecules while effectively improving the subsequent surface dehydrogenation efficiency.Significantly,this strategy demonstrates broad universality:Analogous TM-TiO_(2)@N-C heterojunctions(TM=Mn,Co,Ni,Cu,and Zn)synthesized via the same approach all show substantially improved H_(2)production performance over pristine TiO_(2).
基金financially supported by the Yunnan Fundamental Research Projects(Nos.202401CF070026 and 202501AT070017)the Scientific Research Fund Project of Yunnan Provincial Education Department(No.2024J0134)+1 种基金the Xingdian Talent Program of Yunnan Province,and the Scientific and Technological Project of Yunnan Precious Metals Laboratory(No.YPML-20240502065)Xinjiang Key Laboratory of Novel Functional Materials Chemistry Open Science Project(No.XJLNFMC-202406).
文摘Hydrogen production by electrolysis of water is a key technology to achieve green hydrogen energy economy,but it relies on advanced catalyst materials with high efficiency,stability,and wide pH adaptability.In this study,Ni,Ru,and Pt ternary metals were embedded into nitrogen-doped hollow carbon spheres(NHCSs)by hydrothermal tandem heat treatment to form ternary supported metal nanoparticles with high dispersion and ultra-small particle size(~1.3 nm),which realized efficient hydrogen evolution from multi-scenario electrocatalytic water splitting.In the whole pH range,the performance of NiRuPt/NHCSs is better than that of commercial Pt/C catalyst,and the overpotentials under alkaline,neutral,and acidic conditions are as low as 15.5,20.0,and 29.5 mV,respectively.Under industrial conditions,NiRuPt/NHCSs also have excellent hydrogen evolution reaction(HER)performance,achieving efficient electrolysis of seawater for hydrogen production,and achieving Ampere-level hydrogen production at low voltage(~1.76 V)on integrated membrane electrode assemblies.Density functional theory(DFT)calculations show that in the NiRuPt ternary metal,the Pt site is conducive to promoting the desorption of*H to form H_(2),the Ru site is conducive to promoting the capture of H_(2)O,and the Ni site is conducive to promoting the dissociation of H_(2)O.Therefore,the formed NiRuPt ternary metal synergistically promotes multi-scenario efficient electrolysis of water to produce hydrogen.This study provides a new idea for the design of multi-component metal/carbon-based composite catalysts,and promotes the development of non-noble metal/noble metal composite catalysts in hydrogen production by electrolysis of water.
基金the National Nature Science Foundation of China for Excellent Young Scientists Fund(32222058)Fundamental Research Foundation of CAF(CAFYBB2022QB001).
文摘Developing biomass platform compounds into high value-added chemicals is a key step in renewable resource utilization.Herein,we report porous carbon-supported Ni-ZnO nanoparticles catalyst(Ni-ZnO/AC)synthesized via low-temperature coprecipitation,exhibiting excellent performance for the selective hydrogenation of 5-hydroxymethylfurfural(HMF).A linear correlation is first observed between solvent polarity(E_(T)(30))and product selectivity within both polar aprotic and protic solvent classes,suggesting that solvent properties play a vital role in directing reaction pathways.Among these,1,4-dioxane(aprotic)favors the formation of 2,5-bis(hydroxymethyl)furan(BHMF)with 97.5%selectivity,while isopropanol(iPrOH,protic)promotes 2,5-dimethylfuran production with up to 99.5%selectivity.Mechanistic investigations further reveal that beyond polarity,proton-donating ability is critical in facilitating hydrodeoxygenation.iPrOH enables a hydrogen shuttle mechanism where protons assist in hydroxyl group removal,lowering the activation barrier.In contrast,1,4-dioxane,lacking hydrogen bond donors,stabilizes BHMF and hinders further conversion.Density functional theory calculations confirm a lower activation energy in iPrOH(0.60 eV)compared to 1,4-dioxane(1.07 eV).This work offers mechanistic insights and a practical strategy for solvent-mediated control of product selectivity in biomass hydrogenation,highlighting the decisive role of solvent-catalyst-substrate interactions.
基金financially supported by the National Key R&D Program of China(No.2023YFB3810800)the National Natural Science Foundation of China(Nos.22579008,22502012,22301013,and 22272003)+3 种基金Key Project of the National Natural Science Foundation of China(No.21936001)R&D Program of Beijing Municipal Education Commission(No.KZ20231000506)Beijing Outstanding Young Scientists Program(No.BJJWZYJH01201910005017)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality(No.11000024T000003219982).
文摘The integration of carbon dots(CDs)with graphitic carbon nitride(g-C_(3)N_(4))has emerged as a promising approach to enhance photocatalytic hydrogen(H_(2))evolution.Despite significant progress,critical challenges remain in achieving broad visiblelight absorption and suppressing charge recombination.In this work,we developed a series of photocatalysts through in situ embedding of red-emissive CDs(R-CDs)into g-C_(3)N_(4)(RCN)with precisely controlled loading amounts.Systematic characterization revealed that the R-CDs incorporation simultaneously addresses two fundamental limitations:(1)extending the light absorption edge to 800 nm,and(2)acting as an electron acceptor,facilitating charge separation.The optimized RCN composite demonstrates exceptional H_(2)evolution activity(1.87 mmol·g^(-1)·h^(-1),wavelength(λ)≥420 nm),representing a 3.3-fold enhancement over pristine g-C_(3)N_(4).Remarkably,the apparent quantum efficiency(AQE)reaches 9.1% at 420 nm,while maintaining measurable activity beyond 475 nm,where unmodified g-C_(3)N_(4)shows negligible response.This study provides fundamental insights into band structure engineering and charge carrier management through rational design of CDs-modified semiconductor heterostructures.
基金supported by the National Natural Science Foundation of China (Grant Nos.12074213 and 11574108)the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No.ZR2021ZD01)the Natural Science Foundation of Shandong Province (Grant No.ZR2023MA082)。
文摘In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperature(T_(c))of 1D superconductors is low.In this work,we theoretically investigate the possible high T_(c) superconductivity of(5,5)carbon nanotube(CNT).The pristine(5,5)CNT is a Dirac semimetal and can be modulated into a semiconductor by full hydrogenation.Interestingly,by further hole doping,it can be regulated into a metallic state with the sp3-hybridized𝜎electrons metalized,and a giant Kohn anomaly appears in the optical phonons.The two factors together enhance the electron–phonon coupling,and lead to high-T_(c) superconductivity.When the hole doping concentration of hydrogenated-(5,5)CNT is 2.5 hole/cell,the calculated T_(c) is 82.3 K,exceeding the boiling point of liquid nitrogen.Therefore,the predicted hole-doped hydrogenated-(5,5)CNT provides a new platform for 1D high-T_(c) superconductivity and may have potential applications in 1D nanodevices.