The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-obje...The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.展开更多
In the hydrogen network with the minimum hydrogen utility flow rate,the pinch appears at the point with zero hydrogen surplus,while the hydrogen surpluses of all the other points are positive.In the hydrogen purity pr...In the hydrogen network with the minimum hydrogen utility flow rate,the pinch appears at the point with zero hydrogen surplus,while the hydrogen surpluses of all the other points are positive.In the hydrogen purity profiles,the pinch can only lie at the sink-tie-line intersecting the source purity profile.According to the alternative distribution of the negative and positive regions,the effect of the purification to the hydrogen surplus is analyzed.The results show that when the purification is applied,the pinch point will appear neither above the purification feed nor between the initial pinch point and the purification feed,no matter the purification feed lies above or below the initial pinch point.This is validated by two case studies.展开更多
Hydrogen and light hydrocarbon components are essential resources of the refinery.The optimization of the refinery hydrogen system and recovery of the light hydrocarbon components contained in the gas streams are key ...Hydrogen and light hydrocarbon components are essential resources of the refinery.The optimization of the refinery hydrogen system and recovery of the light hydrocarbon components contained in the gas streams are key strategies to reduce the operating costs for sustainable development.Many research efforts have been focused on the optimization of single impurity hydrogen network,and the flowrates of the hydrogen sources and sinks are assumed to be constant.However,their flowrates vary along with the quality of crude oil and refinery processing plans.A general superstructure of multicomponent refinery hydrogen network is proposed,which considers four components,namely H_(2),H_(2)S,CH_(4) and C_(2+),as well as the flowrate variations of hydrogen source and hydrogen sink.The mathematical model based on the superstructure is developed with objective functions,including the minimization of total annualized cost and the maximization of overall satisfaction of the hydrogen network.Moreover,the model considers the removal of hydrogen sulfide and the recovery of light hydrocarbon components(i.e.,C_(2+))in the optimization.To verify the applicability of the proposed mathematical model,a simplified industrial case study with four scenarios is solved.The optimization results show that the economic benefit can be maximized by considering both the direct reuse of gas streams from high-pressure separator(HP gas stream)and from low-pressure separator(LP gas stream)and the recovery of the light hydrocarbon streams.The fuzzy optimization method can be used to guide the optimal design of the refinery hydrogen system with multi-period variable flowrates.展开更多
Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration...Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.展开更多
To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furtherm...To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furthermore,the impurity remover, hydrogen distribution, compressor and pipe setting are included in the model. Based on this model, the impurity and source(s) that are in higher priority for impurity removal, the optimal targeted concentration, and the hydrogen network with the minimum annual cost can be identified. The efficiency of the proposed model is verified by a case study.展开更多
Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addi...Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addition, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different purification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.展开更多
Hydrogen network management is important to refineries. Various systematic management techniques have been developed to improve the efficiency of refinery hydrogen networks. However, existing methods all treat the hyd...Hydrogen network management is important to refineries. Various systematic management techniques have been developed to improve the efficiency of refinery hydrogen networks. However, existing methods all treat the hydrogen network separately. The tradeoff between hydrogen network cost and oil processing network benefit has not been explored in the hydrogen network management yet. A novel sensitivity analysis scheme is presented to take oil processing network into consideration. Oil processing unit which is sensitive to both oil processing networks and hydrogen networks is identified first. Then, sensitivity analysis of the unit around the operating point of oil processing networks and hydrogen networks is carried out. Finally, the overall optimal operating condition is obtained. An example of a real Chinese refinery demonstrates the effectiveness of the proposed analysis method.展开更多
It is necessary to reduce hydrogen consumption to meet increasingly strict environmental and product-quality regulations for refinery plants. In this paper, the concentration potential concepts proposed for design of ...It is necessary to reduce hydrogen consumption to meet increasingly strict environmental and product-quality regulations for refinery plants. In this paper, the concentration potential concepts proposed for design of water-using networks are extended to synthesis of hydrogen networks with multiple contaminants. In the design procedure, the precedence of processes is determined by the values of concentration potential of demands.The usage of complementary source pair(s) to reduce utility consumption is investigated. Three case studies are presented to illustrate the effectiveness of the method. It is shown that the design procedure has clear engineering meaning.展开更多
Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transpo...Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transport is indispensable for the establishment of HBs.Here,the accelerated proton transport modulates the dynamic hydrogen bonding network of a Zn(BF4)2/EMIMBF4impregnated polyacrylamide/poly(vinyl alcohol)/xanthan gum dual network eutectic gel electrolyte(PPX-ILZSE)for lowtemperature AZMBs.The PPX-ILZSE forms more HBs,shorter HBs lifetimes,higher tetrahedral entropy,and faster desolvation processes,as demonstrated by experimental and theoretical calculations.This enhanced dynamic proton transport promotes rapid cycling of HBs formation-failure,and for polyaniline cathode(PANI)abundant redox sites of proton,confers excellent low temperature electrochemical performance to the Zn//PANI full cell.Specific capacities for 1000 and 5000 cycles at 1 and 5 A g^(-1)were149.8 and 128.4 m A h g^(-1)at room temperature,respectively.Furthermore,specific capacities of 131.1 mA hg^(-1)(92.4%capacity retention)and 0.0066%capacity decay per lap were achieved for 3000and 3500 laps at-30 and 40℃,respectively,at 0.5 A g^(-1).Furthermore,in-situ protective layer of ZnOHF nano-arrays on the Zn anode surface to eliminate dendrite growth and accelerate Zn-ions adsorption and charge transfer.展开更多
In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent wi...In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.展开更多
Based on the knot theory and researching of network structures of glucomannan molecules, the polysaccharides were analyzed. The link prediction analysis is to further reveal the interactions between polysaccharides, t...Based on the knot theory and researching of network structures of glucomannan molecules, the polysaccharides were analyzed. The link prediction analysis is to further reveal the interactions between polysaccharides, to elaborate QSAR of polysaccharides, and to analyze the network conformation relationships among polysaccharides. We made a classification for glucomannan molecules based on the related domestic and international theories, and investigated their network structures and application prospects. The knot theory and the link predictions not only simplify the glucomannan microscopic descriptions but also play a guiding role in predicting and regulating the structures.展开更多
The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the ther...The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the thermal and mechanical properties of epoxy resins, it is challenging to produce recyclable epoxy vitrimers with both excellent mechanical properties and good thermal stability. Herein, a monomer 4-(((5-(hydroxymethyl)furan-2-yl)methylene)amino)phenol(FCN) containing furan ring with potential to form high density of hydrogen bonding among repeating units is designed and copolymerized with glycerol triglycidyl ether to yield epoxy resin(FCN-GTE), which intrinsically has dual hydrogen bond networks, dynamic imine structure and resultant high performance. Importantly, as compared to the BPA-GTE, the FCN-GTE exhibits significantly improved mechanical properties owing to the increased density of hydrogen bond network and physical crosslinking interaction. Furthermore, density functional theory(DFT) calculation and in situ FTIR analysis is conducted to decipher the formation mechanism of hydrogen bond network. In addition, the FCN-GTE possesses superior UV shielding, chemical degradation, and recyclability because of the existence of abundant imine bonds. Notably, the FCN-GTE-based carbon fiber composites could be completely recycled in an amine solution.This study provides a facile strategy for synthesizing recyclable biomass-based high-performance epoxy vitrimers and carbon fiber composites.展开更多
A new coordination compound [Mg(L)(H2 O)5·H2 O](NKU-109, H2 L=5-(4 H-1,2,4-triazol-4-yl)benzene-1,3-dicarboxylic acid) was solvothermally synthesized, featuring a supramolecular hydrogen-bonding network. ...A new coordination compound [Mg(L)(H2 O)5·H2 O](NKU-109, H2 L=5-(4 H-1,2,4-triazol-4-yl)benzene-1,3-dicarboxylic acid) was solvothermally synthesized, featuring a supramolecular hydrogen-bonding network. A good proton conductivity of 5.87×10^-4S/cm was recorded at 70℃ and a relative humidity of75% in alternating current(AC) impedance experiment, which sheds a new light on the design of proton conduction materials based on coordination compounds.展开更多
Hydrothermal reaction of MgCl2 and ethyl tetrazolate-5-carboxylate at 160 ℃unexpectedly yielded compound {(H3O)[Mg(H2O)6]Cl3} (1). The result of X-ray diffraction analysis indicates that 1 crystallizes in the m...Hydrothermal reaction of MgCl2 and ethyl tetrazolate-5-carboxylate at 160 ℃unexpectedly yielded compound {(H3O)[Mg(H2O)6]Cl3} (1). The result of X-ray diffraction analysis indicates that 1 crystallizes in the monoclinic system, space group C2/c with a = 9.2896(3), b = 9.5570(4), c = 13.3169(5) A, β = 90.1221(12)°, V= 1182.28(8) A3, Z = 4, Mr = 257.78, Dc = 1.448 g/cm3, μ = 0.824 mm^-1, F(000) = 536, R = 0.0265 and wR - 0.0706. 1 is composed of one hexa-aqua-magnesium(Ⅱ) ion, one hydroxonium ion, and three chlorine anions. These three components weave a perfect three-dimensional (3D) (4,4,6,12)-connected hydrogen bonding network within 1.展开更多
Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an imp...Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.展开更多
In this work, we report the construction of three-dimensional(3D) CdS nanosphere/graphene networks by a one-step hydrothermal self-assembly route. The 3D graphene networks not only enhance the light scattering, thanks...In this work, we report the construction of three-dimensional(3D) CdS nanosphere/graphene networks by a one-step hydrothermal self-assembly route. The 3D graphene networks not only enhance the light scattering, thanks to the interconnected 3D architecture, but also improve the crystallinity of deposited CdS nanospheres, and at the same time provide a direct electron pathway to quickly separate the photogenerated electron-hole pairs from CdS, which thus dramatically improve the photocatalytic activity.The optimized 3D CdS nanosphere/graphene networks with 2 wt% of graphene could produce molecular hydrogen at a rate of 2310 μmol gcatalyst^(-1) h^(-1) under visible-light illumination(λ > 400 nm).展开更多
A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural a...A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522.展开更多
The crystal structure of the title compound [Na2(OH2)5]2+[C6H12N4H2]2-2+ [Mo7O24]6 ?4H2O, prepared from an aqueous solution of Na2MoO4 ?2H2O in the presence of MoCl3 and hexamethylene tetramine, has been determined by...The crystal structure of the title compound [Na2(OH2)5]2+[C6H12N4H2]2-2+ [Mo7O24]6 ?4H2O, prepared from an aqueous solution of Na2MoO4 ?2H2O in the presence of MoCl3 and hexamethylene tetramine, has been determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Pnma with a = 14.6113(2), b = 18.6833(1), c = 15.3712(2), V = 4196.14(8)3, Z = 4, Mr = 1548.13, F(000) = 3016, = 2.157 mm-1 and Dc = 2.451 g/cm3. The final R factor is 0.0526 for 3818 unique observed reflections (I > 2(I)). The structural analysis reveals that heptamolybdate anions in the title compound consist of seven edge-sharing MoO6 octahedra, and are linked into a three-dimensional framework by sodium ions and hydrogen bonds.展开更多
基金Supported by the National High Technology Research and Development Program of China (2008AA042902, 2009AA04Z162), the Program of Introducing Talents of Discipline to University (B07031) and the National Natural Science Foundation of China (21106129).
文摘The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.
基金Supported by the State Key Development Program for Basic Research of China(2012CB720500) the National Natural Science Foundation of China(21276205,20936004) the State Key Laboratory of Heavy Oil Processing
文摘In the hydrogen network with the minimum hydrogen utility flow rate,the pinch appears at the point with zero hydrogen surplus,while the hydrogen surpluses of all the other points are positive.In the hydrogen purity profiles,the pinch can only lie at the sink-tie-line intersecting the source purity profile.According to the alternative distribution of the negative and positive regions,the effect of the purification to the hydrogen surplus is analyzed.The results show that when the purification is applied,the pinch point will appear neither above the purification feed nor between the initial pinch point and the purification feed,no matter the purification feed lies above or below the initial pinch point.This is validated by two case studies.
基金the National Natural Science Foundation of China (21878328)Natural Science Foundation of Beijing (2212016)Beijing Science and Technology Program, China (Z181100005118010)
文摘Hydrogen and light hydrocarbon components are essential resources of the refinery.The optimization of the refinery hydrogen system and recovery of the light hydrocarbon components contained in the gas streams are key strategies to reduce the operating costs for sustainable development.Many research efforts have been focused on the optimization of single impurity hydrogen network,and the flowrates of the hydrogen sources and sinks are assumed to be constant.However,their flowrates vary along with the quality of crude oil and refinery processing plans.A general superstructure of multicomponent refinery hydrogen network is proposed,which considers four components,namely H_(2),H_(2)S,CH_(4) and C_(2+),as well as the flowrate variations of hydrogen source and hydrogen sink.The mathematical model based on the superstructure is developed with objective functions,including the minimization of total annualized cost and the maximization of overall satisfaction of the hydrogen network.Moreover,the model considers the removal of hydrogen sulfide and the recovery of light hydrocarbon components(i.e.,C_(2+))in the optimization.To verify the applicability of the proposed mathematical model,a simplified industrial case study with four scenarios is solved.The optimization results show that the economic benefit can be maximized by considering both the direct reuse of gas streams from high-pressure separator(HP gas stream)and from low-pressure separator(LP gas stream)and the recovery of the light hydrocarbon streams.The fuzzy optimization method can be used to guide the optimal design of the refinery hydrogen system with multi-period variable flowrates.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)the Key Project of Industrial Science and Technology of Shaanxi Province(2015GY095)
文摘Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.
基金Supported by the National Natural Science Foundation of China(21276205)
文摘To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furthermore,the impurity remover, hydrogen distribution, compressor and pipe setting are included in the model. Based on this model, the impurity and source(s) that are in higher priority for impurity removal, the optimal targeted concentration, and the hydrogen network with the minimum annual cost can be identified. The efficiency of the proposed model is verified by a case study.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(21276204,20936004)
文摘Purification processes are widely used in hydrogen networks of refineries to increase hydrogen reuse. In refineries, hydrogen purification techniques include hydrocarbon, hydrogen sulfide and CO removal units. In addition, light hydrocarbon recovery from the hydrogen source streams can also result in hydrogen purification. In order to simplify the superstructure and mathematical model of hydrogen network integration, the models of different purification processes are unified in this paper, including mass balance and the expressions for hydrogen recovery and impurity removal ratios, which are given for all the purification units in refineries. Based on the proposed unified model, a superstructure of hydrogen networks with purification processes is constructed.
基金financial supported by National Natural Science Foundation of China(No.20409205 & 60421002)National High Technology Research and Development Program of China(No.2007AA04Z191 & 2007AA040702)
文摘Hydrogen network management is important to refineries. Various systematic management techniques have been developed to improve the efficiency of refinery hydrogen networks. However, existing methods all treat the hydrogen network separately. The tradeoff between hydrogen network cost and oil processing network benefit has not been explored in the hydrogen network management yet. A novel sensitivity analysis scheme is presented to take oil processing network into consideration. Oil processing unit which is sensitive to both oil processing networks and hydrogen networks is identified first. Then, sensitivity analysis of the unit around the operating point of oil processing networks and hydrogen networks is carried out. Finally, the overall optimal operating condition is obtained. An example of a real Chinese refinery demonstrates the effectiveness of the proposed analysis method.
基金Supported by the National Natural Science Foundation of China(21176057)the National Basic Research Program of China(2012CB720305)the State Key Laboratory of Chemical Engineering(Open Research Project Skloche-K-2011-04)
文摘It is necessary to reduce hydrogen consumption to meet increasingly strict environmental and product-quality regulations for refinery plants. In this paper, the concentration potential concepts proposed for design of water-using networks are extended to synthesis of hydrogen networks with multiple contaminants. In the design procedure, the precedence of processes is determined by the values of concentration potential of demands.The usage of complementary source pair(s) to reduce utility consumption is investigated. Three case studies are presented to illustrate the effectiveness of the method. It is shown that the design procedure has clear engineering meaning.
基金supported by the National Natural Science Foundation of China(NSFC 52432002,52372041,and 52302087)China Postdoctoral Science Foundation(Grant No.2023 M740895)+1 种基金Heilongjiang Touyan Team Programthe Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003 and HIT.DZJJ.2025002)。
文摘Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transport is indispensable for the establishment of HBs.Here,the accelerated proton transport modulates the dynamic hydrogen bonding network of a Zn(BF4)2/EMIMBF4impregnated polyacrylamide/poly(vinyl alcohol)/xanthan gum dual network eutectic gel electrolyte(PPX-ILZSE)for lowtemperature AZMBs.The PPX-ILZSE forms more HBs,shorter HBs lifetimes,higher tetrahedral entropy,and faster desolvation processes,as demonstrated by experimental and theoretical calculations.This enhanced dynamic proton transport promotes rapid cycling of HBs formation-failure,and for polyaniline cathode(PANI)abundant redox sites of proton,confers excellent low temperature electrochemical performance to the Zn//PANI full cell.Specific capacities for 1000 and 5000 cycles at 1 and 5 A g^(-1)were149.8 and 128.4 m A h g^(-1)at room temperature,respectively.Furthermore,specific capacities of 131.1 mA hg^(-1)(92.4%capacity retention)and 0.0066%capacity decay per lap were achieved for 3000and 3500 laps at-30 and 40℃,respectively,at 0.5 A g^(-1).Furthermore,in-situ protective layer of ZnOHF nano-arrays on the Zn anode surface to eliminate dendrite growth and accelerate Zn-ions adsorption and charge transfer.
基金supported by the National Natural Science Foundation of China(30371009, 30471218) Science Foundation of Fujian Department of Education (JA03059)
文摘In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.
基金Supported by the National Natural Science Foundation of China(31271837 and 31071518)Specialized Research Fund for the Doctoral Program of Higher Education jointly funded by Ministry of Education(20113515110010)+2 种基金Special Research Funds from Ministry of Science and Technology(2012GA7200022)Major projects of industries,universities and research in Fujian Province(2013N5003)Natural Science Foundation of Fujian Province(2011J0101)
文摘Based on the knot theory and researching of network structures of glucomannan molecules, the polysaccharides were analyzed. The link prediction analysis is to further reveal the interactions between polysaccharides, to elaborate QSAR of polysaccharides, and to analyze the network conformation relationships among polysaccharides. We made a classification for glucomannan molecules based on the related domestic and international theories, and investigated their network structures and application prospects. The knot theory and the link predictions not only simplify the glucomannan microscopic descriptions but also play a guiding role in predicting and regulating the structures.
基金financially supported by the National Natural Science Foundation of China (Nos.51973118, 22175121,52003160 and 22001175)Key-Area Research and Development Program of Guangdong Province (Nos.2019B010941001 and2019B010929002)+7 种基金the Natural Science Foundation of Guangdong Province (No.2020A1515010644)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08C642)Shenzhen Science and Technology Program (Nos.JCYJ20220818095810022, JSGGZD20220822095201003 and JCYJ20210324095412035)the start-up fund of Shenzhen University (No.000002110820)the Guangdong Natural Science Foundation (Nos.2022A1515011781 and2021A1515110086)Science and Technology Innovation Commission of Shenzhen,China (Nos.RCBS20200714114910141 and JCYJ20210324132816039)the Start-up Grant at Harbin Institute of Technology (Shenzhen),China (Nos.HA45001108 and HA11409049)Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application (No.ZDSYS20220527171407017)。
文摘The emerging biomass-based epoxy vitrimers hold great potential to fulfill the requirements for sustainable development of society.Since the existence of dynamic chemical bonds in vitrimers often reduces both the thermal and mechanical properties of epoxy resins, it is challenging to produce recyclable epoxy vitrimers with both excellent mechanical properties and good thermal stability. Herein, a monomer 4-(((5-(hydroxymethyl)furan-2-yl)methylene)amino)phenol(FCN) containing furan ring with potential to form high density of hydrogen bonding among repeating units is designed and copolymerized with glycerol triglycidyl ether to yield epoxy resin(FCN-GTE), which intrinsically has dual hydrogen bond networks, dynamic imine structure and resultant high performance. Importantly, as compared to the BPA-GTE, the FCN-GTE exhibits significantly improved mechanical properties owing to the increased density of hydrogen bond network and physical crosslinking interaction. Furthermore, density functional theory(DFT) calculation and in situ FTIR analysis is conducted to decipher the formation mechanism of hydrogen bond network. In addition, the FCN-GTE possesses superior UV shielding, chemical degradation, and recyclability because of the existence of abundant imine bonds. Notably, the FCN-GTE-based carbon fiber composites could be completely recycled in an amine solution.This study provides a facile strategy for synthesizing recyclable biomass-based high-performance epoxy vitrimers and carbon fiber composites.
基金supported by the 973 Program of China (No. 2014CB845600)the National Natural Science Foundation of China (Nos. 21421001 and 21531005)the Natural Science Foundation of Tianjin(No. 15JCZDJC38800)
文摘A new coordination compound [Mg(L)(H2 O)5·H2 O](NKU-109, H2 L=5-(4 H-1,2,4-triazol-4-yl)benzene-1,3-dicarboxylic acid) was solvothermally synthesized, featuring a supramolecular hydrogen-bonding network. A good proton conductivity of 5.87×10^-4S/cm was recorded at 70℃ and a relative humidity of75% in alternating current(AC) impedance experiment, which sheds a new light on the design of proton conduction materials based on coordination compounds.
基金Supported by the Youth Foundation of Jiangxi Provincial Office of Education (GJJ09605)the Science Foundation of Jiangxi Provincial Office of Education (GJJ09637)
文摘Hydrothermal reaction of MgCl2 and ethyl tetrazolate-5-carboxylate at 160 ℃unexpectedly yielded compound {(H3O)[Mg(H2O)6]Cl3} (1). The result of X-ray diffraction analysis indicates that 1 crystallizes in the monoclinic system, space group C2/c with a = 9.2896(3), b = 9.5570(4), c = 13.3169(5) A, β = 90.1221(12)°, V= 1182.28(8) A3, Z = 4, Mr = 257.78, Dc = 1.448 g/cm3, μ = 0.824 mm^-1, F(000) = 536, R = 0.0265 and wR - 0.0706. 1 is composed of one hexa-aqua-magnesium(Ⅱ) ion, one hydroxonium ion, and three chlorine anions. These three components weave a perfect three-dimensional (3D) (4,4,6,12)-connected hydrogen bonding network within 1.
文摘Membrane technology has found wide applications in the petrochemical industry, mainly in the purification and recovery of the hydrogen resources. Accurate prediction of the membrane separation performance plays an important role in carrying out advanced process control (APC). For the first time, a soft-sensor model for the membrane separation process has been established based on the radial basis function (RBF) neural networks. The main performance parameters, i.e, permeate hydrogen concentration, permeate gas flux, and residue hydrogen concentration, are estimated quantitatively by measuring the operating temperature, feed-side pressure, permeate-side pressure, residue-side pressure, feed-gas flux, and feed-hydrogen concentration excluding flow structure, membrane parameters, and other compositions. The predicted results can gain the desired effects. The effectiveness of this novel approach lays a foundation for integrating control technology and optimizing the operation of the gas membrane separation process.
基金supported by the National Natural Science Foundation of China (no. 91545116 and U1510108)Pioneer ‘‘Hundred Talents Program’’ of CAS, Start-Up Grant of Institute of Coal Chemistry (2016SCXQT01)+3 种基金Singapore Agency for Science, Technology and Research (A*Star)Science and Engineering Research Council- Public Sector Funding (PSF): 1421200075Singapore Ministry of Education Academic Research Fund (AcRF) Tier 1: RG10/16 and RG111/15State Key Laboratory of Coal Conversion (J17-18-913-1, J15-16913)
文摘In this work, we report the construction of three-dimensional(3D) CdS nanosphere/graphene networks by a one-step hydrothermal self-assembly route. The 3D graphene networks not only enhance the light scattering, thanks to the interconnected 3D architecture, but also improve the crystallinity of deposited CdS nanospheres, and at the same time provide a direct electron pathway to quickly separate the photogenerated electron-hole pairs from CdS, which thus dramatically improve the photocatalytic activity.The optimized 3D CdS nanosphere/graphene networks with 2 wt% of graphene could produce molecular hydrogen at a rate of 2310 μmol gcatalyst^(-1) h^(-1) under visible-light illumination(λ > 400 nm).
基金Supported by the National Natural Science Foundation of China(No.2 0 1710 10)
文摘A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522.
基金This work was supported by Chinese Academy of Sciences the State Education Ministry+1 种基金 the State Personnel Ministry the NSFC (20073048)
文摘The crystal structure of the title compound [Na2(OH2)5]2+[C6H12N4H2]2-2+ [Mo7O24]6 ?4H2O, prepared from an aqueous solution of Na2MoO4 ?2H2O in the presence of MoCl3 and hexamethylene tetramine, has been determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Pnma with a = 14.6113(2), b = 18.6833(1), c = 15.3712(2), V = 4196.14(8)3, Z = 4, Mr = 1548.13, F(000) = 3016, = 2.157 mm-1 and Dc = 2.451 g/cm3. The final R factor is 0.0526 for 3818 unique observed reflections (I > 2(I)). The structural analysis reveals that heptamolybdate anions in the title compound consist of seven edge-sharing MoO6 octahedra, and are linked into a three-dimensional framework by sodium ions and hydrogen bonds.