期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sequential reactant water management by complementary multisite catalysts for surpassing platinum hydrogen evolution activity
1
作者 Yu Lin Defang Ding +5 位作者 Shicheng Zhu Qunlei Wen Huangjingwei Li Zhen Li Youwen Liu Yi Shen 《Nano Research》 SCIE EI CSCD 2024年第3期1232-1241,共10页
Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and a... Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and activation still unqualified the thresholds of economic viability.Herein,we proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process.The Isotopic labeled in situ Raman spectroscopy describes 4-coordinated hydrogen bonded H_(2)O to be free H_(2)O passing the inner Helmholtz plane in the vicinity of the catalysts under the action of hydrophilic Mo sites.Furthermore,potential-dependent electrochemical impedance spectroscopy(EIS)reveals that electrophilic V sites with abundant 3d empty orbitals could activate the lone-pair electrons in the free H_(2)O molecules to produce more protic hydrogen,and dimerize into H_(2) at the Ni sites.By the sequential management of reactive H_(2)O molecules,NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity(49 mV@10 mA∙cm^(-2) over 140 h).Profoundly,this study provides a tangible model to deepen the comprehension of the catalyst–electrolyte interface and create efficient catalysts for diverse reactions. 展开更多
关键词 hydrogen evolution activity complementary multisite catalysts sequential reactive water management interfacial water molecules
原文传递
Solution-based Synthesis of Ni Sb Nanoparticles for Electrochemical Activity in Hydrogen Evolution Reaction
2
作者 Yin-yin Qian Jing Yang +2 位作者 Huan-ran Li Shi-qi Xing Qing Yang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第3期373-378,I0002,I0016-I0017,共9页
A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a... A cost-effective,facile solution-based hot-injection synthetic route has been developed to synthesize NiSb nanoparticles in oleylamine(OAm)using commercially available inexpensive precursor with reducing toxicity at a relatively low temperature of 160℃.Especially,an organic reductant of borane-tert-butylamine complex is intentionally involved in the reaction system to promote a fast reduction of metallic Ni and Sb for the formation of the NiSb nanoparticles.Structural characterizations reveal that the NiSb nanoparticles are hexagonal phase with space group P63/mmc and they are composed of small granules with size about 10 nm that tend to form agglomerates with porous-like geometries.This is the first report on the generation of transition metal antimonide via solution-based strategy,and the asfabricated nanoparticles possess actively electrocatalytic hydrogen evolution reaction(HER)property in acidic electrolytes when the long-chain ligand of OAm adhered on the surface of the nanoparticles is exchanged by ligand-removal and exchange procedure.It is found that the NiSb nanoparticles as a new kind of non-noble-metal HER electrocatalysts only require overpotentials of 437 and 531 mV to achieve high current densities of 10 and 50 mA/cm^2 respectively,as well as exhibit low charge transfer resistance and excellent HER stability. 展开更多
关键词 Hot-injection synthetic route NiSb nanoparticles Ligand-removal and exchange hydrogen evolution reaction activity
在线阅读 下载PDF
Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
3
《Science Foundation in China》 CAS 2017年第3期12-12,共1页
Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and H... Subject Code:B01With the support by the National Natural Science Foundation of China,a creative study by the research group led by Prof.Chen Qianwang(陈乾旺)from the University of Science and Technology of China and High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of 展开更多
关键词 Alloying cobalt with ruthenium in nitrogen doped graphene layers for developing highly active hydrogen evolution electrocatalysts in alkaline media
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部