In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the pl...In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the platform wrapped with fairing structure and separated from the retrieval unit is described. The suppression effect evaluation based on the correlation theory of sound pressure and particle velocity for spherical wave in infinite homogeneous medium is proposed and the difference value between them is used to evaluate the hydrodynamic restraining performance of the bottom-mounted platform under far field condition. Through the sea test, it is indicated that the platform with sparse layers fairing structure(there are two layers for the fairing, in which the inside layer is 6-layers sparse metal net, and the outside layer is 1-layer polyester cloth, and then it takes sparse layers for short) has no attenuation in the sound pressure response to the sound source signal, but obvious suppression in the velocity response to the hydrodynamic noise. The effective frequency of the fairing structure is decreased below 10 Hz, and the noise magnitude is reduced by 10 d B. With the comparison of different fairing structures, it is concluded that the tighter fairing structure can enhance the performance of sound transmission and flow restraining.展开更多
This paper numerically investigates the influence of separation variation of the outriggers on the hydrodynamic performance of a high speed trimaran (HST) aiming at improving its applicability in diverse realistic d...This paper numerically investigates the influence of separation variation of the outriggers on the hydrodynamic performance of a high speed trimaran (HST) aiming at improving its applicability in diverse realistic disciplines. The present investigation was performed within the framework of the 2-D slender body method (SBM) by calculating the resistance of three symmetric trimaran series moving in a calm free surface of deep water. Each trimaran series comprises of 4681 configurations generated by considering 151 staggers (-50%≤a≤+ 100%), and 31 separations (100%≤β≤400%) for 81 Froude numbers (0.20≤Fn≤ 1.0). In developing the three trimaran series, Wigley-st. AMECRC-09, and NPL-4a models were used separately for both the main and side hulls of each individu;d series models. A computer macro named Tri-PL was created using the Visual Basic for Applications~. Tri-PL~ sequentially interfaced Maxsurfe then Hullspeed to generate the models of the three trimaran series together with their detailed hydrostatic particulars, followed by their resistance components. The numerical results were partially validated against the available published numerical calculations and experimental results, to benchmark the Tri-PL macro and hence to rely on the analysis outcomes. A graph template was creaLed within the framework of SigmaPlot to visualize the significant results of the Tri-PL properlv.展开更多
In order to reduce the hydrodynamic and structural influences on the detection accuracy especially in the very-lowfrequency range, some vibration restraint methods are raised, which are the wrapped fairing improvement...In order to reduce the hydrodynamic and structural influences on the detection accuracy especially in the very-lowfrequency range, some vibration restraint methods are raised, which are the wrapped fairing improvement, the floating body shape improvement and the cable vibration reduction treatment. Through the improvement analysis and experimental comparison, the final treatments are proposed, namely the multilayer wrapped fairing structure with composite materials, the floating body with NACA0024 airfoil section and X-shape tail spoiler, as well as the brush cable. The sea test is carried out to evaluate the vibration restraint effect. Through comparison of the responses to the ocean ambient noise and the direction of arrival(DOA) estimations with the same underwater transmitting transducer, the results indicate that the horizontal floating platform with vibration restraint treatment has obvious flow resisting effect especially in low frequency range and more accurate DOA estimation.展开更多
基金financially supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2016DQ18)Shandong Provincial Key Technologies of Independent Innovation Project(Grant No.2014GJJS0101)
文摘In the disturbance of unsteady flow field under the sea, the monitoring accuracy and precision of the bottom-mounted acoustic monitoring platform will decrease. In order to reduce the hydrodynamic interference, the platform wrapped with fairing structure and separated from the retrieval unit is described. The suppression effect evaluation based on the correlation theory of sound pressure and particle velocity for spherical wave in infinite homogeneous medium is proposed and the difference value between them is used to evaluate the hydrodynamic restraining performance of the bottom-mounted platform under far field condition. Through the sea test, it is indicated that the platform with sparse layers fairing structure(there are two layers for the fairing, in which the inside layer is 6-layers sparse metal net, and the outside layer is 1-layer polyester cloth, and then it takes sparse layers for short) has no attenuation in the sound pressure response to the sound source signal, but obvious suppression in the velocity response to the hydrodynamic noise. The effective frequency of the fairing structure is decreased below 10 Hz, and the noise magnitude is reduced by 10 d B. With the comparison of different fairing structures, it is concluded that the tighter fairing structure can enhance the performance of sound transmission and flow restraining.
文摘This paper numerically investigates the influence of separation variation of the outriggers on the hydrodynamic performance of a high speed trimaran (HST) aiming at improving its applicability in diverse realistic disciplines. The present investigation was performed within the framework of the 2-D slender body method (SBM) by calculating the resistance of three symmetric trimaran series moving in a calm free surface of deep water. Each trimaran series comprises of 4681 configurations generated by considering 151 staggers (-50%≤a≤+ 100%), and 31 separations (100%≤β≤400%) for 81 Froude numbers (0.20≤Fn≤ 1.0). In developing the three trimaran series, Wigley-st. AMECRC-09, and NPL-4a models were used separately for both the main and side hulls of each individu;d series models. A computer macro named Tri-PL was created using the Visual Basic for Applications~. Tri-PL~ sequentially interfaced Maxsurfe then Hullspeed to generate the models of the three trimaran series together with their detailed hydrostatic particulars, followed by their resistance components. The numerical results were partially validated against the available published numerical calculations and experimental results, to benchmark the Tri-PL macro and hence to rely on the analysis outcomes. A graph template was creaLed within the framework of SigmaPlot to visualize the significant results of the Tri-PL properlv.
基金financially supported by the Key Research and Development Plan (Public) Project of Shandong Province (Grant No.2019GHY112042)the International Science and Technology Cooperation Project of Shandong Academy of Sciences (Grant No. 2019GHZD01)。
文摘In order to reduce the hydrodynamic and structural influences on the detection accuracy especially in the very-lowfrequency range, some vibration restraint methods are raised, which are the wrapped fairing improvement, the floating body shape improvement and the cable vibration reduction treatment. Through the improvement analysis and experimental comparison, the final treatments are proposed, namely the multilayer wrapped fairing structure with composite materials, the floating body with NACA0024 airfoil section and X-shape tail spoiler, as well as the brush cable. The sea test is carried out to evaluate the vibration restraint effect. Through comparison of the responses to the ocean ambient noise and the direction of arrival(DOA) estimations with the same underwater transmitting transducer, the results indicate that the horizontal floating platform with vibration restraint treatment has obvious flow resisting effect especially in low frequency range and more accurate DOA estimation.