Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli R...Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli River and the Bielahong River. The results showed that the average contents of DOC for soil layer of 0–100 cm were 730.6 mg/kg, 250.9 mg/kg, 423.0 mg/kg and 333.1 mg/kg respectively from riverbed to river terrace along the transverse directions of the Naoli watershed. The content of the soil DOC was the highest in the riverbed, lower in the high floodplain and much lower in the river terrace, and it was the lowest in the low floodplain. The difference in the content and vertical distribution of DOC between the riverbed and the three riparian wetlands was significant, while it was not significant among the low floodplain, the high floodplain and the river terrace. The variability of soil DOC was related to the hydrological connectivity between different landscape position of the riparian wetlands and the adjacent stream. Extremely significant correlations were observed between DOC and total organic carbon(TOC), total iron(TFe), ferrous iron(Fe(II)) whose correlation coefficients were 0.819, –0.544 and –0.709 in riparian wetlands of the Naoli River. With the increase of wetland destruction, soil p H increased and soil DOC content changed. The correlation coefficients between soil DOC and TOC, TFe, Fe(II) also changed into 0.759, –0.686 and –0.575 respectively in the Bielahong River. Under the impact of drainage ditches, the correlations between soil DOC and TFe, Fe(II) were not obvious, while the soil p H was weakly alkaline and was negatively correlated with soil DOC in the previous high floodplain. It indicates that riparian hydro-geomorphology is the main factor that could well explain this spatial variability of soil DOC, and the agricultural environmental hydraulic works like ditching also must be considered.展开更多
To conduct a large-scale hydrologic-response and landform evolution simulation at high resolution,a complex physics-based numerical model,the Integrated Hydrology Model(InHM),was revised utilizing cluster parallel com...To conduct a large-scale hydrologic-response and landform evolution simulation at high resolution,a complex physics-based numerical model,the Integrated Hydrology Model(InHM),was revised utilizing cluster parallel computing.The parallelized InHM(ParInHM) divides the simulated area into multiple catchments based on geomorphologic features,and generates boundary-value problems for each catchment to construct simulation tasks,which are then dispatched to different computers to start the simulation.Landform evolution is considered during simulating and implemention in one framework.The dynamical Longest-Processing-Time(LPT) first scheduling algorithm is applied to job management.In addition,a pause-integratedivide-resume routine method is used to ensure the hydrologic validity during the simulation period.The routine repeats until the entire simulation period is finished.ParInHM has been tested in a computer cluster that uses 16 processors for the calculation,to simulate 100 years' hydrologic-response and soil erosion for the 117-km2 Kaho'olawe Island in the Hawaiian Islands under two different mesh resolutions.The efficiency of ParInHM was evaluated by comparing the performance of the cluster system utilizing different numbers of processors,as well as the performance of non-parallelized system without domain decomposition.The results of this study show that it is feasible to conduct a regional-scale hydrologic-response and sediment transport simulation at high resolution without demanding significant computing resources.展开更多
Dhidhessa River Basin is physio-graphically and hydrologically important in the Blue Nile basin, however, its morphometry and hydrology are not well known. This study aimed to characterize hydro-geomor-phology of the ...Dhidhessa River Basin is physio-graphically and hydrologically important in the Blue Nile basin, however, its morphometry and hydrology are not well known. This study aimed to characterize hydro-geomor-phology of the basin via basin morphometry analysis. SRTM DEM, geological and hydrological maps of the area were used in ArcGIS 10.3 environment for this analysis. Results showed that a 33,468 km total stream length of all orders was found distributed within 28,637 km2 drainage area in a dendritic pattern. According to morphometric parameter classification, total stream length and stream order of the basin were high whereas stream length ratio, bifurcation ratio and hydrologic storage coefficient were low. Furthermore, drainage area was large, drainage frequency was coarse, basin shape was more elongated, drainage density was medium, infiltration number was low, overland flow was long and constant of channel maintenance was high. Moreover, the basin's relief, relief ratio, ruggedness number, gradient ratio and the slope was high. In general, the study asserted that the basin was underlain by uniform resistant rocks, less prone to flooding, with high water resources potential and susceptible to soil erosion. The morphometric analysis approach pursued in this study was cost- and time-effective for basin characterization.展开更多
A 13-m long sediment core from Borsog Bay of Lake Khuvsgul,northern Mongolia records hydro-environmental changes during the past 10000 years;three rapid environmental changes(ca.2700 a BP,ca.6000 a BP and ca.8000 a BP...A 13-m long sediment core from Borsog Bay of Lake Khuvsgul,northern Mongolia records hydro-environmental changes during the past 10000 years;three rapid environmental changes(ca.2700 a BP,ca.6000 a BP and ca.8000 a BP based on ^(14)C dates of organic carbon materials) are detected in depth profiles of sediment physical properties.Temporal changes in the physical properties of the core(grain size,grain density and water content) also suggest three periods of large discharge from outside and three periods of stable input(200-500 cm,800-980 cm and 1050-1200 cm).The sedimentation rates in the stable period are 0.102 cm·a^(-1),0.085 cm·a^(-1) and 0.139 cm·a^(-1),respectively.The periods of large discharge likely correspond to the intervals of the three rapid environmental changes,indicating that there were three rapid and high discharge periods related to melt water and/or heavy rainfall during the past 10000 years in this region.The analytical results also show that the physical properties are valuable in reconstructing past hydro-geomorphological fluctuations in the lake-catchment system.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41101080,41171047)Natural Science Foundation of Shandong Province(No.ZR2014DQ028)
文摘Spatial variation of dissolved organic carbon(DOC) in soils of riparian wetlands and responses to hydro-geomorphologic changes in the Sanjiang Plain were analyzed through in situ collecting soil samples in the Naoli River and the Bielahong River. The results showed that the average contents of DOC for soil layer of 0–100 cm were 730.6 mg/kg, 250.9 mg/kg, 423.0 mg/kg and 333.1 mg/kg respectively from riverbed to river terrace along the transverse directions of the Naoli watershed. The content of the soil DOC was the highest in the riverbed, lower in the high floodplain and much lower in the river terrace, and it was the lowest in the low floodplain. The difference in the content and vertical distribution of DOC between the riverbed and the three riparian wetlands was significant, while it was not significant among the low floodplain, the high floodplain and the river terrace. The variability of soil DOC was related to the hydrological connectivity between different landscape position of the riparian wetlands and the adjacent stream. Extremely significant correlations were observed between DOC and total organic carbon(TOC), total iron(TFe), ferrous iron(Fe(II)) whose correlation coefficients were 0.819, –0.544 and –0.709 in riparian wetlands of the Naoli River. With the increase of wetland destruction, soil p H increased and soil DOC content changed. The correlation coefficients between soil DOC and TOC, TFe, Fe(II) also changed into 0.759, –0.686 and –0.575 respectively in the Bielahong River. Under the impact of drainage ditches, the correlations between soil DOC and TFe, Fe(II) were not obvious, while the soil p H was weakly alkaline and was negatively correlated with soil DOC in the previous high floodplain. It indicates that riparian hydro-geomorphology is the main factor that could well explain this spatial variability of soil DOC, and the agricultural environmental hydraulic works like ditching also must be considered.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB409901-1)Zhejiang Provincial Natural Science Foundation of China (Grant No. R5110012)the E-Project of Microsoft Research Asia
文摘To conduct a large-scale hydrologic-response and landform evolution simulation at high resolution,a complex physics-based numerical model,the Integrated Hydrology Model(InHM),was revised utilizing cluster parallel computing.The parallelized InHM(ParInHM) divides the simulated area into multiple catchments based on geomorphologic features,and generates boundary-value problems for each catchment to construct simulation tasks,which are then dispatched to different computers to start the simulation.Landform evolution is considered during simulating and implemention in one framework.The dynamical Longest-Processing-Time(LPT) first scheduling algorithm is applied to job management.In addition,a pause-integratedivide-resume routine method is used to ensure the hydrologic validity during the simulation period.The routine repeats until the entire simulation period is finished.ParInHM has been tested in a computer cluster that uses 16 processors for the calculation,to simulate 100 years' hydrologic-response and soil erosion for the 117-km2 Kaho'olawe Island in the Hawaiian Islands under two different mesh resolutions.The efficiency of ParInHM was evaluated by comparing the performance of the cluster system utilizing different numbers of processors,as well as the performance of non-parallelized system without domain decomposition.The results of this study show that it is feasible to conduct a regional-scale hydrologic-response and sediment transport simulation at high resolution without demanding significant computing resources.
文摘Dhidhessa River Basin is physio-graphically and hydrologically important in the Blue Nile basin, however, its morphometry and hydrology are not well known. This study aimed to characterize hydro-geomor-phology of the basin via basin morphometry analysis. SRTM DEM, geological and hydrological maps of the area were used in ArcGIS 10.3 environment for this analysis. Results showed that a 33,468 km total stream length of all orders was found distributed within 28,637 km2 drainage area in a dendritic pattern. According to morphometric parameter classification, total stream length and stream order of the basin were high whereas stream length ratio, bifurcation ratio and hydrologic storage coefficient were low. Furthermore, drainage area was large, drainage frequency was coarse, basin shape was more elongated, drainage density was medium, infiltration number was low, overland flow was long and constant of channel maintenance was high. Moreover, the basin's relief, relief ratio, ruggedness number, gradient ratio and the slope was high. In general, the study asserted that the basin was underlain by uniform resistant rocks, less prone to flooding, with high water resources potential and susceptible to soil erosion. The morphometric analysis approach pursued in this study was cost- and time-effective for basin characterization.
基金Grants-in-Aid for Scientific Research from Ministry of Education,Science and Culture(Japan)to K.Kashiwaya[(A2)20253002]
文摘A 13-m long sediment core from Borsog Bay of Lake Khuvsgul,northern Mongolia records hydro-environmental changes during the past 10000 years;three rapid environmental changes(ca.2700 a BP,ca.6000 a BP and ca.8000 a BP based on ^(14)C dates of organic carbon materials) are detected in depth profiles of sediment physical properties.Temporal changes in the physical properties of the core(grain size,grain density and water content) also suggest three periods of large discharge from outside and three periods of stable input(200-500 cm,800-980 cm and 1050-1200 cm).The sedimentation rates in the stable period are 0.102 cm·a^(-1),0.085 cm·a^(-1) and 0.139 cm·a^(-1),respectively.The periods of large discharge likely correspond to the intervals of the three rapid environmental changes,indicating that there were three rapid and high discharge periods related to melt water and/or heavy rainfall during the past 10000 years in this region.The analytical results also show that the physical properties are valuable in reconstructing past hydro-geomorphological fluctuations in the lake-catchment system.