The notion of energetic complementarity can be a tool for energy resource managers to prioritize energy generation projects based on renewable resources in both interconnected and independent systems. As a tool in dec...The notion of energetic complementarity can be a tool for energy resource managers to prioritize energy generation projects based on renewable resources in both interconnected and independent systems. As a tool in decision-making, it is important to know better the influence of energetic complementarity on the performance of hybrid systems especially with regard to energy shortages but also in relation to other parameters. In recent years, hydro PV hybrid systems have become a growing target of researchers and designers for the idea of installing photovoltaic modules on the water surface of reservoirs. Energetic complementarity has three components: time-complementarity, energy-amplitude and amplitude-complementarity. This paper is dedicated to the study of the influence of time-complementarity on the storage of energy through batteries in hydro PV hybrid systems. The method applied is in the literature and suggests the simulation of the system under study with the idealization of energy availabilities, to remove the effects of climatic variations and the characteristic intermittency of renewable resources. Simulations were performed with the well-known software Homer. The results provided the variations of the states of charge of the batteries as a function of different time-complementarities, indicating as expected better performances associated to higher time-complementarities. The results indicated that the cost of energy for a hybrid system with 28 batteries was equal to US$ 0.502 per kWh and that this cost increased as the time complementarity between energy resources moved away from the situation corresponding to full complementarity. The simulations also showed that the maintenance of the zero failure condition supplying the demands of the consumer loads requires that the load be reduced to 52% if the complementarity is reduced from the full complementarity to zero complementarity, with the cost of energy going from US$ 0.502 per kWh to US$ 0.796 per kWh. The results also allow a better understanding of the influence of time complementarity on the performance of hybrid systems.展开更多
The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar...The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar PV was conducted on October 13th,2018 in the Kyushu area,the curtailment has been frequently executed including wind power after that.In this study,cross-regional interconnector and pumped hydro energy storage(PHES)are focused on mitigating curtailment.In Japan,there are 9 electric power areas which connected each other by cross-regional interconnectors.According to the historical operation,cross-regional interconnectors were secured as emergency flexible measures,but after the implicit auction was started from October 2018,it is used on merit order.Regarding a PHES in Japan,they have been built with nuclear power plants for several decades.Because the output of nuclear power generation is constant,so the PHES is used to absorb the surplus at nighttime when the demand declines.All nuclear power plants in Japan have been shut down after the accident at the Fukushima Daiichi Nuclear Power Plant following the Great East Japan Earthquake that occurred on March 11th,2011.There are several nuclear power plants that have been restarted(9 reactors,as of August 2019).In this study,the amount of curtailment for solar PV in the Kyushu area is sent to the Chugoku area using the cross-regional interconnector(Kanmon line).Then,the PHES in the Chugoku area is pumping with low price.Because the spot price in the market is low when the curtailment is executed.After that,the PHES is generating at night with high price when the solar PV is not generating.It makes a profit by the deference for the cost of pumping and the revenue of generating by the PHES.As a calculation result,for one week from May 2nd to 8th,2019,a profit becomes 152.2 million JPY(about 1.22 million EUR).For this purpose,it is necessary to raise the operation capacity of the cross-regional interconnector up to the rated capacity with the frequency control function of solar PV instead of the capacity to keep frequency in the event of an accident.This will allow the further introduction of solar PV in Japan.展开更多
Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to com...Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.展开更多
风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空...风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空间模型,然后提出综合考虑稳态运行约束条件和小信号稳定性约束条件的系统功率传输能力计算方法及流程,掌握不同功率水平下系统稳定运行区域及边界的变化特征,最终得到不同水电出力下的直流外送系统功率传输范围、特定传输功率下所允许的水电出力最小值、风光配比与小信号稳定性的定量关系。通过该方法定量评估风光水配比不同时直流外送系统的功率传输能力,从而优化选取风光水配比。结果表明,水电出力较小时,系统传输功率上限受小信号稳定性制约,下限受电压偏移约束制约;水电出力较大时,系统传输功率上限受LCC-HVDC安全运行约束制约,下限受逆变侧电压偏移、系统潮流约束制约;在功率运行点不变时,风光配比平衡工况系统更加稳定。最后,通过PSCAD/EMTDC下的电磁暂态仿真,验证上述功率传输能力理论计算的正确性。展开更多
随着水、光互补发电系统的应用越来越广泛,如何对水、光出力及负荷增长变化的不确定的融合特性建模对电网的运行调度及规划愈加重要。典型场景生成是解决该问题的主要方法之一,由于传统采用历史数据概率建模,抽样并削减生成场景的方法...随着水、光互补发电系统的应用越来越广泛,如何对水、光出力及负荷增长变化的不确定的融合特性建模对电网的运行调度及规划愈加重要。典型场景生成是解决该问题的主要方法之一,由于传统采用历史数据概率建模,抽样并削减生成场景的方法计算复杂度高、准确率低,且无法有效处理高维多变量数据,该文提出一种基于深度嵌入聚类的水光荷不确定性源场景生成方法。首先利用堆栈自编码(stacked auto-encoder,SAE)网络提取水光荷不确定变量的初始特征,降低数据维度;然后,利用KL(Kullback-Leibler)散度优化聚类分配目标对自编码网络进行调整,采用自适应矩估计(adaptive moment estimation,Adam)优化算法得到模型最佳参数,通过对编码所嵌入的特征向量不断迭代优化,得到水光荷不确定性变量间的时空依赖关系,从而生成典型场景。算例分析以某地区电网实际采集数据为研究对象,利用误差平方和(sum of squared error,SSE)、SIL、CHI指标对比传统聚类方法,验证了所提算法的有效性。展开更多
文摘The notion of energetic complementarity can be a tool for energy resource managers to prioritize energy generation projects based on renewable resources in both interconnected and independent systems. As a tool in decision-making, it is important to know better the influence of energetic complementarity on the performance of hybrid systems especially with regard to energy shortages but also in relation to other parameters. In recent years, hydro PV hybrid systems have become a growing target of researchers and designers for the idea of installing photovoltaic modules on the water surface of reservoirs. Energetic complementarity has three components: time-complementarity, energy-amplitude and amplitude-complementarity. This paper is dedicated to the study of the influence of time-complementarity on the storage of energy through batteries in hydro PV hybrid systems. The method applied is in the literature and suggests the simulation of the system under study with the idealization of energy availabilities, to remove the effects of climatic variations and the characteristic intermittency of renewable resources. Simulations were performed with the well-known software Homer. The results provided the variations of the states of charge of the batteries as a function of different time-complementarities, indicating as expected better performances associated to higher time-complementarities. The results indicated that the cost of energy for a hybrid system with 28 batteries was equal to US$ 0.502 per kWh and that this cost increased as the time complementarity between energy resources moved away from the situation corresponding to full complementarity. The simulations also showed that the maintenance of the zero failure condition supplying the demands of the consumer loads requires that the load be reduced to 52% if the complementarity is reduced from the full complementarity to zero complementarity, with the cost of energy going from US$ 0.502 per kWh to US$ 0.796 per kWh. The results also allow a better understanding of the influence of time complementarity on the performance of hybrid systems.
文摘The amount of solar PV installed capacity has steadily increased to 44.5 GW at the end of FY2017,since the introduction of the Feed in Tariff(FiT)to Japan in 2012.On the other hand,since the first curtailment of solar PV was conducted on October 13th,2018 in the Kyushu area,the curtailment has been frequently executed including wind power after that.In this study,cross-regional interconnector and pumped hydro energy storage(PHES)are focused on mitigating curtailment.In Japan,there are 9 electric power areas which connected each other by cross-regional interconnectors.According to the historical operation,cross-regional interconnectors were secured as emergency flexible measures,but after the implicit auction was started from October 2018,it is used on merit order.Regarding a PHES in Japan,they have been built with nuclear power plants for several decades.Because the output of nuclear power generation is constant,so the PHES is used to absorb the surplus at nighttime when the demand declines.All nuclear power plants in Japan have been shut down after the accident at the Fukushima Daiichi Nuclear Power Plant following the Great East Japan Earthquake that occurred on March 11th,2011.There are several nuclear power plants that have been restarted(9 reactors,as of August 2019).In this study,the amount of curtailment for solar PV in the Kyushu area is sent to the Chugoku area using the cross-regional interconnector(Kanmon line).Then,the PHES in the Chugoku area is pumping with low price.Because the spot price in the market is low when the curtailment is executed.After that,the PHES is generating at night with high price when the solar PV is not generating.It makes a profit by the deference for the cost of pumping and the revenue of generating by the PHES.As a calculation result,for one week from May 2nd to 8th,2019,a profit becomes 152.2 million JPY(about 1.22 million EUR).For this purpose,it is necessary to raise the operation capacity of the cross-regional interconnector up to the rated capacity with the frequency control function of solar PV instead of the capacity to keep frequency in the event of an accident.This will allow the further introduction of solar PV in Japan.
基金Chinese Academy of Science (No.KGCX2- YW- 366)Ministry of Science and Technology(No. 2011AA05A106)
文摘Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.
文摘风光水打捆经电网换相换流器高压直流输电(line commutated converter based high voltage direct current,LCC-HVDC)外送系统中,风光水配比不同会影响系统的功率传输能力。文章首先建立风光水打捆直流外送系统的稳态数学模型和状态空间模型,然后提出综合考虑稳态运行约束条件和小信号稳定性约束条件的系统功率传输能力计算方法及流程,掌握不同功率水平下系统稳定运行区域及边界的变化特征,最终得到不同水电出力下的直流外送系统功率传输范围、特定传输功率下所允许的水电出力最小值、风光配比与小信号稳定性的定量关系。通过该方法定量评估风光水配比不同时直流外送系统的功率传输能力,从而优化选取风光水配比。结果表明,水电出力较小时,系统传输功率上限受小信号稳定性制约,下限受电压偏移约束制约;水电出力较大时,系统传输功率上限受LCC-HVDC安全运行约束制约,下限受逆变侧电压偏移、系统潮流约束制约;在功率运行点不变时,风光配比平衡工况系统更加稳定。最后,通过PSCAD/EMTDC下的电磁暂态仿真,验证上述功率传输能力理论计算的正确性。
文摘随着水、光互补发电系统的应用越来越广泛,如何对水、光出力及负荷增长变化的不确定的融合特性建模对电网的运行调度及规划愈加重要。典型场景生成是解决该问题的主要方法之一,由于传统采用历史数据概率建模,抽样并削减生成场景的方法计算复杂度高、准确率低,且无法有效处理高维多变量数据,该文提出一种基于深度嵌入聚类的水光荷不确定性源场景生成方法。首先利用堆栈自编码(stacked auto-encoder,SAE)网络提取水光荷不确定变量的初始特征,降低数据维度;然后,利用KL(Kullback-Leibler)散度优化聚类分配目标对自编码网络进行调整,采用自适应矩估计(adaptive moment estimation,Adam)优化算法得到模型最佳参数,通过对编码所嵌入的特征向量不断迭代优化,得到水光荷不确定性变量间的时空依赖关系,从而生成典型场景。算例分析以某地区电网实际采集数据为研究对象,利用误差平方和(sum of squared error,SSE)、SIL、CHI指标对比传统聚类方法,验证了所提算法的有效性。