In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test spe...In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more significant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was significantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously.展开更多
The Ag/γ-Fe_2O_3 nanocomposite was synthesized by solvothermal reduction method via using ferric nitrate and silver nitrate as raw materials, and ethylene glycol as the reducing agent. The composite was characterized...The Ag/γ-Fe_2O_3 nanocomposite was synthesized by solvothermal reduction method via using ferric nitrate and silver nitrate as raw materials, and ethylene glycol as the reducing agent. The composite was characterized by X-ray powder diffraction, scanning electron microscope, transmission electron microscope, and energy dispersive X-ray. The prepared Ag/γ-Fe_2O_3 was used for the catalytic hydrogenation of nitrobenzene to aniline by hydrazine hydrate. The factors such as the silver content in the catalyst, reaction time, reaction temperature and the regeneration of catalyst were investigated. The results showed that the yield of aniline reached 100% by utilizing the 1%wt(nitrobenzene) Ag/γ-Fe_2O_3 for the catalytic hydrogenation of nitrobenzene for 3 h to obtain aniline at 78 ℃, hydrazine hydrate as the hydrogen source, while the silver content in the catalyst was 3%mol.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51278403 and 51308445)the Program for Innovative Research Team in University(IRT 13089)
文摘In order to study the durability of sprayed concrete (shotcrete), effects of different hydration aging and water-binder ratio (w/b) on the microstructure of cement paste and basic mechanical properties of test specimens were investigated. The phase composition, mass percentage of ettringite and portland in hydration production and microstructure were characterized by X-ray diffraction (XRD), thermo gravimetry-differential scanning calorimetry (TG-DSC) and scanning electron microscopy (SEM), respectively. The experimental results showed that changes in phase composition was more significant than those of water-binder ratio. With hydration aging and water-binder ratio increased, the mass percentage of ettringite and portland was decreased from 4.42%, 1.49% to 3.31%, 1.35%, respectively and the microstructure of paste was significantly compacted. Likewise, the mechanical properties including cubic compressive strength and splitting tensile strength were rised obviously.
基金supported by the science and technology support project of Jiangsu Province(No.BY2015057-03)
文摘The Ag/γ-Fe_2O_3 nanocomposite was synthesized by solvothermal reduction method via using ferric nitrate and silver nitrate as raw materials, and ethylene glycol as the reducing agent. The composite was characterized by X-ray powder diffraction, scanning electron microscope, transmission electron microscope, and energy dispersive X-ray. The prepared Ag/γ-Fe_2O_3 was used for the catalytic hydrogenation of nitrobenzene to aniline by hydrazine hydrate. The factors such as the silver content in the catalyst, reaction time, reaction temperature and the regeneration of catalyst were investigated. The results showed that the yield of aniline reached 100% by utilizing the 1%wt(nitrobenzene) Ag/γ-Fe_2O_3 for the catalytic hydrogenation of nitrobenzene for 3 h to obtain aniline at 78 ℃, hydrazine hydrate as the hydrogen source, while the silver content in the catalyst was 3%mol.