期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
1
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
A Contemporary Review on Drought Modeling Using Machine Learning Approaches 被引量:2
2
作者 Karpagam Sundararajan Lalit Garg +5 位作者 Kathiravan Srinivasan Ali Kashif Bashir Jayakumar Kaliappan Ganapathy Pattukandan Ganapathy Senthil Kumaran Selvaraj T.Meena 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期447-487,共41页
Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has face... Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has faced many droughtsin the last few decades. Predicting future droughts is vital for framing drought management plans to sustainnatural resources. The data-driven modelling for forecasting the metrological time series prediction is becomingmore powerful and flexible with computational intelligence techniques. Machine learning (ML) techniques havedemonstrated success in the drought prediction process and are becoming popular to predict the weather, especiallythe minimum temperature using backpropagation algorithms. The favourite ML techniques for weather forecastinginclude support vector machines (SVM), support vector regression, random forest, decision tree, logistic regression,Naive Bayes, linear regression, gradient boosting tree, k-nearest neighbours (KNN), the adaptive neuro-fuzzyinference system, the feed-forward neural networks, Markovian chain, Bayesian network, hidden Markov models,and autoregressive moving averages, evolutionary algorithms, deep learning and many more. This paper presentsa recent review of the literature using ML in drought prediction, the drought indices, dataset, and performancemetrics. 展开更多
关键词 Drought forecasting machine learning drought indices stochastic models fuzzy logic dynamic method hybrid method
在线阅读 下载PDF
基于双层交互Q学习算法的轴承生产智能排程 被引量:2
3
作者 裴志杰 杨晓英 +1 位作者 杨欣 杨逢海 《机电工程》 北大核心 2025年第3期451-462,共12页
针对带装配的两阶段分布式混合流水车间(TSDHFSSP)环境下的轴承排程问题,提出了一种基于双层交互Q学习算法(DIQLA)的车间调度方法,以解决轴承生产智能排程问题。首先,描述了轴承的排程问题,建立了以最小化最大完工时间为目标的数学模型... 针对带装配的两阶段分布式混合流水车间(TSDHFSSP)环境下的轴承排程问题,提出了一种基于双层交互Q学习算法(DIQLA)的车间调度方法,以解决轴承生产智能排程问题。首先,描述了轴承的排程问题,建立了以最小化最大完工时间为目标的数学模型;然后,引入马尔科夫决策过程(MDP),模拟了轴承生产排程过程,根据两阶段生产过程,搭建了双智能体交互的Q学习模型,接着对两阶段的的智能体进行了建模,设计了双智能体的状态变量、调度规则动作集和即时奖励函数,改进了传统的贪婪搜索策略,提出了两阶段联合排程算法;最后,利用实例数据对该算法进行了仿真验证,将其与单一智能体Q学习算法(QL)及非支配遗传算法(NSGA-II)、带精英策略的改进的鲸鱼优化算法(IWOA)等算法进行了对比,先在同一算例下验证了该算法的有效性,再通过对比不同订单算例,验证了该算法的性能,并利用实例数据再次验证了该算法在两阶段排程的应用效果。研究结果表明:两阶段联合排程算法在解决轴承排程问题时具有可行性,在优化轴承生产排程方面上具有较好的效果;在实际的应用中,与原有人工排产相比,其产品的加工周期平均缩减了17%,订单交付率平均提升了9%。该方法为轴承制造类企业生产排程提供了一种智能化的方案。 展开更多
关键词 轴承生产 车间调度方法 智能排程 两阶段分布式混合流水车间 Q学习 双层交互 两阶段联合排程算法
在线阅读 下载PDF
Critic特征加权的多核最小二乘孪生支持向量机 被引量:1
4
作者 贺智鹏 吕莉 +1 位作者 陈娟 康平 《信息与控制》 北大核心 2025年第1期123-136,共14页
针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,... 针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,CMKLSTSVM)分类方法。首先,CMKLSTSVM使用Critic法赋予特征权重,反映不同特征间重要性差异,降低冗余特征及噪声样本影响。其次,根据混合多核学习策略构造了一种新的多核权重系数确定方法。该方法通过基核与理想核间的混合核对齐值判断核函数相似程度,确定权重系数,可以合理地组合多个核函数,最大程度地发挥不同核函数的映射能力。最后,采用加权求和的方式将特征权重与核权重进行统一并构造多核结构,使数据表达更全面,提高模型灵活性。在UCI数据集上的对比实验表明,CMKLSTSVM的分类准确率优于单核结构的SVM(support vector machine)算法,同时在高光谱图像上的对比实验反映了CMKLSTSVM对于包含噪声的真实分类问题的有效性。 展开更多
关键词 Critic权值法 混合多核学习方法 加权多核模型 孪生支持向量机 最小二乘损失函数
原文传递
Spatial-temporal simulation and prediction of root zone soil moisture based on Hydrus-1D and CNN-LSTM-attention models in Yutian Oasis,southern Xinjiang,China
5
作者 Xiaobo LÜ Ilyas NURMEMET +4 位作者 Sentian XIAO Jing ZHAO Xinru YU Yilizhati AILI Shiqin LI 《Pedosphere》 2025年第5期846-857,共12页
Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables... Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables,including surface soil moisture(SSM),often exhibit nonlinearities that are challenging to identify and quantify using conventional statistical techniques.Therefore,this study presents a hybrid convolutional neural network(CNN)-long short-term memory neural network(LSTM)-attention(CLA)model for predicting RZSM.Owing to the scarcity of soil moisture(SM)observation data,the physical model Hydrus-1D was employed to simulate a comprehensive dataset of spatial-temporal SM.Meteorological data and moderate resolution imaging spectroradiometer vegetation characterization parameters were used as predictor variables for the training and validation of the CLA model.The results of the CLA model for SM prediction in the root zone were significantly enhanced compared with those of the traditional LSTM and CNN-LSTM models.This was particularly notable at the depth of 80–100 cm,where the fitness(R^(2))reached nearly 0.9298.Moreover,the root mean square error of the CLA model was reduced by 49%and 57%compared with those of the LSTM and CNN-LSTM models,respectively.This study demonstrates that the integration of physical modeling and deep learning methods provides a more comprehensive and accurate understanding of spatial-temporal SM variations in the root zone. 展开更多
关键词 arid region convolutional neural network deep learning method hybrid prediction model leaf area index long short-term memory neural network normalized difference vegetation index physical model surface soil moisture
原文传递
工业互联网场景下基于混合方法的轻量级DDoS攻击检测方案
6
作者 张俊峰 李滨涵 《贵阳学院学报(自然科学版)》 2025年第2期43-47,共5页
随着5G应用场景的普及,工业互联网得到大规模应用和普及,工业互联网面临的网络安全问题也层出不穷。针对工业互联网面临的DDoS攻击问题,提出了一种轻量级的工业互联网场景下DDoS攻击的检测机制。该机制首先通过主成分分析算法对海量数... 随着5G应用场景的普及,工业互联网得到大规模应用和普及,工业互联网面临的网络安全问题也层出不穷。针对工业互联网面临的DDoS攻击问题,提出了一种轻量级的工业互联网场景下DDoS攻击的检测机制。该机制首先通过主成分分析算法对海量数据流进行降维处理,提取出DDoS攻击的主要特征,然后通过朴素贝叶斯对数据流中的异常数据进行判断。该检测机制在保证相同数量级检测准确性的前提下,可有效降低计算开销,节省检测时间,整体上提高检测效果。 展开更多
关键词 混合方法 轻量级 DDOS 机器学习
在线阅读 下载PDF
Hybrid method integrating machine learning and particle swarm optimization for smart chemical process operations 被引量:7
7
作者 Haoqin Fang Jianzhao Zhou +6 位作者 Zhenyu Wang Ziqi Qiu Yihua Sun Yue Lin Ke Chen Xiantai Zhou Ming Pan 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第2期274-287,共14页
Modeling and optimization is crucial to smart chemical process operations.However,a large number of nonlinearities must be considered in a typical chemical process according to complex unit operations,chemical reactio... Modeling and optimization is crucial to smart chemical process operations.However,a large number of nonlinearities must be considered in a typical chemical process according to complex unit operations,chemical reactions and separations.This leads to a great challenge of implementing mechanistic models into industrial-scale problems due to the resulting computational complexity.Thus,this paper presents an efficient hybrid framework of integrating machine learning and particle swarm optimization to overcome the aforementioned difficulties.An industrial propane dehydrogenation process was carried out to demonstrate the validity and efficiency of our method.Firstly,a data set was generated based on process mechanistic simulation validated by industrial data,which provides sufficient and reasonable samples for model training and testing.Secondly,four well-known machine learning methods,namely,K-nearest neighbors,decision tree,support vector machine,and artificial neural network,were compared and used to obtain the prediction models of the processes operation.All of these methods achieved highly accurate model by adjusting model parameters on the basis of high-coverage data and properly features.Finally,optimal process operations were obtained by using the particle swarm optimization approach. 展开更多
关键词 smart chemical process operations data generation hybrid method machine learning particle swarm optimization
原文传递
改进迭代贪婪算法求解可重入流水车间调度问题 被引量:8
8
作者 吴秀丽 李雨馨 +1 位作者 匡源 崔建杰 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2364-2380,共17页
可重入混合流水车间是在混合流水车间的基础上增加了可重入特性,具有更高的调度复杂性。为了求解可重入混合流水车间调度问题,首先建立了调度优化模型,优化目标为最小化最大完工时间,然后提出一种带精英调整的学习型迭代贪婪算法(LIG-EA... 可重入混合流水车间是在混合流水车间的基础上增加了可重入特性,具有更高的调度复杂性。为了求解可重入混合流水车间调度问题,首先建立了调度优化模型,优化目标为最小化最大完工时间,然后提出一种带精英调整的学习型迭代贪婪算法(LIG-EA)。LIG-EA算法采用基于工件的编码方式,对重组后的染色体进行解码。种群分为精英个体和普通个体两部分,对精英个体进行精英破坏重建和基于关键工件的染色体调整,对普通个体进行学习机制的构建和普通个体的破坏重建。为提高初始种群质量,采用NEH启发式算法进行种群初始化,并针对可重入混合流水车间的重入特性,在重建操作中增加了插入有效性判断,提高了算法的运行速度。通过大量实验表明LIG-EA算法能够有效求解可重入混合流水车间调度问题。 展开更多
关键词 可重入混合流水车间调度 迭代贪婪算法 精英解集构建 关键工件调整 学习机制构建
在线阅读 下载PDF
机器人增量学习研究综述 被引量:2
9
作者 马旭淼 徐德 《控制与决策》 EI CSCD 北大核心 2024年第5期1409-1423,共15页
机器人的应用场景正在不断更新换代,数据量也在日益增长.传统的机器学习方法难以适应动态的环境,而增量学习技术能够模拟人类的学习过程,使机器人能利用旧知识来加快新任务的学习,在不遗忘旧技能的前提下学习新的技能.目前对于机器人增... 机器人的应用场景正在不断更新换代,数据量也在日益增长.传统的机器学习方法难以适应动态的环境,而增量学习技术能够模拟人类的学习过程,使机器人能利用旧知识来加快新任务的学习,在不遗忘旧技能的前提下学习新的技能.目前对于机器人增量学习的相关研究仍然较少,对此,主要介绍机器人增量学习研究进展.首先,对增量学习进行简介;其次,从参数和模型的角度出发,将当前机器人增量学习主流方法分为变参数方法、变模型方法、混合方法3类,分别对每一类进行论述,并给出相应的增量学习技术在机器人领域中的应用实例;然后,对机器人增量学习中常用的数据集和评价指标进行介绍;最后,对增量学习未来的发展趋势进行展望. 展开更多
关键词 增量学习 变参数方法 变模型方法 混合方法 技能学习 机器人
原文传递
基于Maxwell-LSTM的抗蛇行减振器混合建模方法研究 被引量:1
10
作者 吴舒扬 唐兆 +2 位作者 罗仁 董少迪 蒋涛 《铁道机车车辆》 北大核心 2024年第5期1-10,共10页
列车车轮踏面在实际服役环境下的磨损,会提高抗蛇行减振器的工作频率。传统动力学仿真使用的Maxwell模型在模拟高频状态下的抗蛇行减振器动态特性存在挑战。而能够准确拟合高频状态下的抗蛇行减振器动态特性的物理参数模型存在计算效率... 列车车轮踏面在实际服役环境下的磨损,会提高抗蛇行减振器的工作频率。传统动力学仿真使用的Maxwell模型在模拟高频状态下的抗蛇行减振器动态特性存在挑战。而能够准确拟合高频状态下的抗蛇行减振器动态特性的物理参数模型存在计算效率低下、无法在多体动力学仿真中运用的问题。文中提出一种Maxwell等效参数模型和LSTM神经网络耦合的减振器混合建模方法,在传统Maxwell模型基础上,通过LSTM神经网络捕捉输入变量自身变化特性,间接考虑外部激励的频变与幅变以应对上述挑战。为证明该混合建模方法的可行性,将使用该方法训练好的混合模型与台架试验结果、非线性的刚度阻尼分段Maxwell模型进行对比。结果表明:相较于分段Maxwell模型,LSTM混合模型在计算效率基本一致的前提下,高频激励下混合模型误差平均降低22.31%,高幅值激励下混合模型误差平均降低26.89%,动态刚度误差平均降低26.35%,动态阻尼误差平均降低21.01%。可以得出结论,LSTM混合模型在表征减振器高频高幅值下的动态特性具有优势,基于Maxwell-LSTM的抗蛇行减振器混合建模方法可以解决传统动力学模型计算效率和计算精度之间的矛盾,更适合用于各类工况下的车辆系统动力学仿真。 展开更多
关键词 抗蛇行减振器 混合建模方法 LSTM网络 深度学习 车辆系统动力学
在线阅读 下载PDF
基于监督对比学习和混合注意力残差网络的隔膜泵单向阀故障诊断 被引量:1
11
作者 任洪兵 彭宇明 黄海波 《机电工程》 CAS 北大核心 2024年第4期594-603,共10页
由于工业生产环境中的强噪声和其他环境激励,隔膜泵单向阀不同故障的特征呈现一定的相似性,导致传统深度学习方法对单向阀的故障状态难以准确识别。为解决这一问题,提出了一种结合监督对比学习和混合注意力残差神经网络(HA-ResNet)的隔... 由于工业生产环境中的强噪声和其他环境激励,隔膜泵单向阀不同故障的特征呈现一定的相似性,导致传统深度学习方法对单向阀的故障状态难以准确识别。为解决这一问题,提出了一种结合监督对比学习和混合注意力残差神经网络(HA-ResNet)的隔膜泵单向阀故障诊断方法。首先,将注意力机制引入了残差神经网络以提升网络的学习能力,自适应调节了重要但微弱特征权重,并以恒等变换减少了有效信息被抑制现象;其次,提出了加权“监督对比损失(SCL)+交叉熵(CE)损失”,调节单向阀不同故障状态数据之间的距离,明确了单向阀不同故障状态的分类边界与降低噪声或环境激励的干扰;最后,通过工程实测数据,对监督对比学习和HA-ResNet融合方法的有效性和稳定性进行了验证。研究结果表明:监督对比学习和HA-ResNet融合方法在隔膜泵单向阀验证集上的平均准确率达到了99.3%;与其他故障诊断方法相比,其在诊断精度和稳定性上都具有一定的优势,验证了该方法在噪声干扰条件下故障诊断的可靠性。 展开更多
关键词 隔膜泵 单向阀 故障诊断 监督对比损失 混合注意力残差神经网络 特征相似性 深度学习方法
在线阅读 下载PDF
考虑碎冰阻力和静水阻力的高效船型多目标优化方法 被引量:1
12
作者 王世超 刘刚 《中国舰船研究》 CSCD 北大核心 2024年第6期97-107,共11页
[目的]针对碎冰环境对船舶性能的影响,以及基于经验公式的传统优化方法在碎冰阻力优化方面的局限性,基于CFD&DEM方法提出一种精确优化碎冰阻力和静水阻力的船型优化方法。[方法]首先,基于CFD和CFD&DEM方法计算静水阻力和碎冰阻... [目的]针对碎冰环境对船舶性能的影响,以及基于经验公式的传统优化方法在碎冰阻力优化方面的局限性,基于CFD&DEM方法提出一种精确优化碎冰阻力和静水阻力的船型优化方法。[方法]首先,基于CFD和CFD&DEM方法计算静水阻力和碎冰阻力,提出一种创新的混合多岛遗传算法(HMIGA),用于模拟真实环境下的碎冰场;然后,结合XGBoost模型建立高效代理模型,并执行NSGA-III算法进行优化求解;最后,以KCS标准模型为例进行验证。[结果]结果显示,优化后船型的碎冰阻力降低了10.58%,静水阻力降低了2.32%;优化船型所承受的峰值载荷更少,同时通过产生波浪推开浮冰,还可进一步降低冰阻力。[结论]所提方法综合考虑了流场和碎冰场的随机性对优化结果的影响,能更精确、有效地改善船舶的碎冰阻力与静水阻力。HMIGA算法和XGBoost模型的引入可提升方法的实际应用效果,从而为未来碎冰环境下船舶的优化设计提供指导。 展开更多
关键词 船舶设计 船型优化设计 多目标优化 计算流体力学 离散元方法 混合多岛遗传算法 集成学习
在线阅读 下载PDF
FORECASTING CHINA'S FOREIGN TRADE VOLUME WITH A KERNEL-BASED HYBRID ECONOMETRIC-AI ENSEMBLE LEARNING APPROACH 被引量:5
13
作者 Lean YU Shouyang WANG Kin Keung LAI 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2008年第1期1-19,共19页
Due to the complexity of economic system and the interactive effects between all kinds of economic variables and foreign trade, it is not easy to predict foreign trade volume. However, the difficulty in predicting for... Due to the complexity of economic system and the interactive effects between all kinds of economic variables and foreign trade, it is not easy to predict foreign trade volume. However, the difficulty in predicting foreign trade volume is usually attributed to the limitation of many conventional forecasting models. To improve the prediction performance, the study proposes a novel kernel-based ensemble learning approach hybridizing econometric models and artificial intelligence (AI) models to predict China's foreign trade volume. In the proposed approach, an important econometric model, the co-integration-based error correction vector auto-regression (EC-VAR) model is first used to capture the impacts of all kinds of economic variables on Chinese foreign trade from a multivariate linear anal- ysis perspective. Then an artificial neural network (ANN) based EC-VAR model is used to capture the nonlinear effects of economic variables on foreign trade from the nonlinear viewpoint. Subsequently, for incorporating the effects of irregular events on foreign trade, the text mining and expert's judgmental adjustments are also integrated into the nonlinear ANN-based EC-VAR model. Finally, all kinds of economic variables, the outputs of linear and nonlinear EC-VAR models and judgmental adjustment model are used as input variables of a typical kernel-based support vector regression (SVR) for en- semble prediction purpose. For illustration, the proposed kernel-based ensemble learning methodology hybridizing econometric techniques and AI methods is applied to China's foreign trade volume predic- tion problem. Experimental results reveal that the hybrid econometric-AI ensemble learning approach can significantly improve the prediction performance over other linear and nonlinear models listed in this study. 展开更多
关键词 Artificial neural networks error-correction vector auto-regression foreign trade prediction hybrid ensemble learning kernel-based method support vector regression.
原文传递
A review and taxonomy of wind and solar energy forecasting methods based on deep learning 被引量:9
14
作者 Ghadah Alkhayat Rashid Mehmood 《Energy and AI》 2021年第2期136-160,共25页
Renewable energy is essential for planet sustainability.Renewable energy output forecasting has a significant impact on making decisions related to operating and managing power systems.Accurate prediction of renewable... Renewable energy is essential for planet sustainability.Renewable energy output forecasting has a significant impact on making decisions related to operating and managing power systems.Accurate prediction of renewable energy output is vital to ensure grid reliability and permanency and reduce the risk and cost of the energy market and systems.Deep learning’s recent success in many applications has attracted researchers to this field and its promising potential is manifested in the richness of the proposed methods and the increasing number of publications.To facilitate further research and development in this area,this paper provides a review of deep learning-based solar and wind energy forecasting research published during the last five years discussing extensively the data and datasets used in the reviewed works,the data pre-processing methods,deterministic and probabilistic methods,and evaluation and comparison methods.The core characteristics of all the reviewed works are summarised in tabular forms to enable methodological comparisons.The current challenges in the field and future research directions are given.The trends show that hybrid forecasting models are the most used in this field followed by Recurrent Neural Network models including Long Short-Term Memory and Gated Recurrent Unit,and in the third place Convolutional Neural Networks.We also find that probabilistic and multistep ahead forecasting methods are gaining more attention.Moreover,we devise a broad taxonomy of the research using the key insights gained from this extensive review,the taxonomy we believe will be vital in understanding the cutting-edge and accelerating innovation in this field. 展开更多
关键词 Deep learning Renewable energy forecasting Solar energy Wind energy TAXONOMY hybrid methods
在线阅读 下载PDF
Enhancing reliability assessment of curved low-stiffness track-viaducts with an adaptive surrogate-based approach emphasizing track dynamic geometric state
15
作者 CHENG Fang LIU Hui YANG Rui 《Journal of Central South University》 CSCD 2024年第11期4262-4275,共14页
Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a si... Traditional track dynamic geometric state(TDGS)simulation incurs substantial computational burdens,posing challenges for developing reliability assessment approach that accounts for TDGS.To overcome these,firstly,a simulation-based TDGS model is established,and a surrogate-based model,grid search algorithm-particle swarm optimization-genetic algorithm-multi-output least squares support vector regression,is established.Among them,hyperparameter optimization algorithm’s effectiveness is confirmed through test functions.Subsequently,an adaptive surrogate-based probability density evolution method(PDEM)considering random track geometry irregularity(TGI)is developed.Finally,taking curved train-steel spring floating slab track-U beam as case study,the surrogate-based model trained on simulation datasets not only shows accuracy in both time and frequency domains,but also surpasses existing models.Additionally,the adaptive surrogate-based PDEM shows high accuracy and efficiency,outperforming Monte Carlo simulation and simulation-based PDEM.The reliability assessment shows that the TDGS part peak management indexes,left/right vertical dynamic irregularity,right alignment dynamic irregularity,and track twist,have reliability values of 0.9648,0.9918,0.9978,and 0.9901,respectively.The TDGS mean management index,i.e.,track quality index,has reliability value of 0.9950.These findings show that the proposed framework can accurately and efficiently assess the reliability of curved low-stiffness track-viaducts,providing a theoretical basis for the TGI maintenance. 展开更多
关键词 reliability assessment track dynamic geometric state hybrid machine learning algorithm adaptive learning strategy probability density evolution method
在线阅读 下载PDF
A Hybrid and Inexact Algorithm for Nonconvex and Nonsmooth Optimization
16
作者 WANG Yiyang SONG Xiaoliang 《Journal of Systems Science & Complexity》 2025年第3期1330-1350,共21页
The problem of nonconvex and nonsmooth optimization(NNO)has been extensively studied in the machine learning community,leading to the development of numerous fast and convergent numerical algorithms.Existing algorithm... The problem of nonconvex and nonsmooth optimization(NNO)has been extensively studied in the machine learning community,leading to the development of numerous fast and convergent numerical algorithms.Existing algorithms typically employ unified iteration schemes and require explicit solutions to subproblems for ensuring convergence.However,these inflexible iteration schemes overlook task-specific details and may encounter difficulties in providing explicit solutions to subproblems.In contrast,there is evidence suggesting that practical applications can benefit from approximately solving subproblems;however,many existing works fail to establish the theoretical validity of such approximations.In this paper,the authors propose a hybrid inexact proximal alternating method(hiPAM),which addresses a general NNO problem with coupled terms while overcoming all aforementioned challenges.The proposed hiPAM algorithm offers a flexible yet highly efficient approach by seamlessly integrating any efficient methods for approximate subproblem solving that cater to specificities.Additionally,the authors have devised a simple yet implementable stopping criterion that generates a Cauchy sequence and ultimately converges to a critical point of the original NNO problem.The proposed numerical experiments using both simulated and real data have demonstrated that hiPAM represents an exceedingly efficient and robust approach to NNO problems. 展开更多
关键词 hybrid inexact proximal alternating method inexact minimization criteria machine learning nonconvex and nonsmooth optimization
原文传递
基于模糊径向基函数神经网络的PID算法球磨机控制系统研究 被引量:20
17
作者 程启明 程尹曼 +1 位作者 郑勇 汪明媚 《中国电机工程学报》 EI CSCD 北大核心 2009年第35期22-28,共7页
针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采... 针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采用混合优化算法,即首先采用混沌粒子群优化(particle swarm optimization,PSO)算法进行离线粗调,再采用BP算法进行在线细调,从而快速全局收敛得到最佳的PID控制参数。Matlab仿真结果表明,该控制系统有效地解决了球磨机这种复杂对象的控制问题,该系统控制参数的优化算法收敛快、不易陷入局部极小点,系统控制跟踪快、超调小、解耦好、鲁棒性和适应性强,控制品质优于传统PID解耦控制方法。 展开更多
关键词 球磨机 模糊径向基函数神经网络 混合优化算法 早熟判据 PID控制
原文传递
基于改进GA-BP混合算法的电力变压器故障诊断 被引量:21
18
作者 王少芳 蔡金锭 刘庆珍 《电网技术》 EI CSCD 北大核心 2004年第4期30-33,共4页
将改进遗传算法(GA)和误差反向传播(BP)算法相结合构成的混合算法用于训练人工神经网络。该混合算法有效地解决了常规 BP 算法学习网络权值收敛速度慢、易陷入局部极小和 GA 算法独立训练神经网络速度缓慢等缺点,并对其应用于电力变压... 将改进遗传算法(GA)和误差反向传播(BP)算法相结合构成的混合算法用于训练人工神经网络。该混合算法有效地解决了常规 BP 算法学习网络权值收敛速度慢、易陷入局部极小和 GA 算法独立训练神经网络速度缓慢等缺点,并对其应用于电力变压器故障诊断进行了仿真,仿真结果表明了该算法具有较快的收敛速度和较高的计算精度,故障诊断结果证实了该算法应用于电力变压器故障诊断的有效性。 展开更多
关键词 电力变压器 故障诊断 遗传算法 人工神经网络 GA-BP混合算法 仿真
在线阅读 下载PDF
基于混合策略的关联分类方法 被引量:5
19
作者 李学明 付萌 李宾飞 《计算机应用研究》 CSCD 北大核心 2013年第3期724-727,共4页
关联分类中现有的显式学习方法无法解决small disjunction问题,而Lazy方法分类效率低。针对这两类方法存在的问题,提出了一种基于混合策略的关联分类方法。具体算法为:先判断待分类样本是否满足显式学习模式的分类器特征;然后把满足分... 关联分类中现有的显式学习方法无法解决small disjunction问题,而Lazy方法分类效率低。针对这两类方法存在的问题,提出了一种基于混合策略的关联分类方法。具体算法为:先判断待分类样本是否满足显式学习模式的分类器特征;然后把满足分类器特征的待分类样本用显式模式进行分类,把不满足分类器特征的待分类样本用Lazy模式来预测;最后结合两类方法的分类结果得到最终的分类结果。实验比较了该方法与传统的关联分类方法,结果表明,该方法在分类准确率和执行效率方面均达到了更好的效果。 展开更多
关键词 混合策略 关联分类方法 显式学习方法 Lazy方法
在线阅读 下载PDF
前馈神经网络的一种有效学习算法 被引量:6
20
作者 杜正春 刘玉田 夏道止 《电子学报》 EI CAS CSCD 北大核心 1995年第8期57-61,共5页
本文提出了基于混合GN-BFGS法进行前馈神经网络学习的新算法。该算法结合GN法与BFGS法的特点,既利用了问题本身的特殊结构,又能取得超线性甚至二次渐近收敛率。与BP算法相比,这种算法可取得更快和更可靠的学习特性,... 本文提出了基于混合GN-BFGS法进行前馈神经网络学习的新算法。该算法结合GN法与BFGS法的特点,既利用了问题本身的特殊结构,又能取得超线性甚至二次渐近收敛率。与BP算法相比,这种算法可取得更快和更可靠的学习特性,在学习过程中利用该方法能够区分非零残量和零残量问题的特点,提出了自动调整隐单元数的方法,从而可以保证网络的学习与归纳能力。示例系统的结果表明了所提方法的有效性。 展开更多
关键词 前馈神经网络 学习算法 混合GN-BFGS法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部