期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
1
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
A Contemporary Review on Drought Modeling Using Machine Learning Approaches 被引量:2
2
作者 Karpagam Sundararajan Lalit Garg +5 位作者 Kathiravan Srinivasan Ali Kashif Bashir Jayakumar Kaliappan Ganapathy Pattukandan Ganapathy Senthil Kumaran Selvaraj T.Meena 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期447-487,共41页
Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has face... Drought is the least understood natural disaster due to the complex relationship of multiple contributory factors. Itsbeginning and end are hard to gauge, and they can last for months or even for years. India has faced many droughtsin the last few decades. Predicting future droughts is vital for framing drought management plans to sustainnatural resources. The data-driven modelling for forecasting the metrological time series prediction is becomingmore powerful and flexible with computational intelligence techniques. Machine learning (ML) techniques havedemonstrated success in the drought prediction process and are becoming popular to predict the weather, especiallythe minimum temperature using backpropagation algorithms. The favourite ML techniques for weather forecastinginclude support vector machines (SVM), support vector regression, random forest, decision tree, logistic regression,Naive Bayes, linear regression, gradient boosting tree, k-nearest neighbours (KNN), the adaptive neuro-fuzzyinference system, the feed-forward neural networks, Markovian chain, Bayesian network, hidden Markov models,and autoregressive moving averages, evolutionary algorithms, deep learning and many more. This paper presentsa recent review of the literature using ML in drought prediction, the drought indices, dataset, and performancemetrics. 展开更多
关键词 Drought forecasting machine learning drought indices stochastic models fuzzy logic dynamic method hybrid method
在线阅读 下载PDF
Hybrid method integrating machine learning and particle swarm optimization for smart chemical process operations 被引量:7
3
作者 Haoqin Fang Jianzhao Zhou +6 位作者 Zhenyu Wang Ziqi Qiu Yihua Sun Yue Lin Ke Chen Xiantai Zhou Ming Pan 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第2期274-287,共14页
Modeling and optimization is crucial to smart chemical process operations.However,a large number of nonlinearities must be considered in a typical chemical process according to complex unit operations,chemical reactio... Modeling and optimization is crucial to smart chemical process operations.However,a large number of nonlinearities must be considered in a typical chemical process according to complex unit operations,chemical reactions and separations.This leads to a great challenge of implementing mechanistic models into industrial-scale problems due to the resulting computational complexity.Thus,this paper presents an efficient hybrid framework of integrating machine learning and particle swarm optimization to overcome the aforementioned difficulties.An industrial propane dehydrogenation process was carried out to demonstrate the validity and efficiency of our method.Firstly,a data set was generated based on process mechanistic simulation validated by industrial data,which provides sufficient and reasonable samples for model training and testing.Secondly,four well-known machine learning methods,namely,K-nearest neighbors,decision tree,support vector machine,and artificial neural network,were compared and used to obtain the prediction models of the processes operation.All of these methods achieved highly accurate model by adjusting model parameters on the basis of high-coverage data and properly features.Finally,optimal process operations were obtained by using the particle swarm optimization approach. 展开更多
关键词 smart chemical process operations data generation hybrid method machine learning particle swarm optimization
原文传递
基于双层交互Q学习算法的轴承生产智能排程 被引量:2
4
作者 裴志杰 杨晓英 +1 位作者 杨欣 杨逢海 《机电工程》 北大核心 2025年第3期451-462,共12页
针对带装配的两阶段分布式混合流水车间(TSDHFSSP)环境下的轴承排程问题,提出了一种基于双层交互Q学习算法(DIQLA)的车间调度方法,以解决轴承生产智能排程问题。首先,描述了轴承的排程问题,建立了以最小化最大完工时间为目标的数学模型... 针对带装配的两阶段分布式混合流水车间(TSDHFSSP)环境下的轴承排程问题,提出了一种基于双层交互Q学习算法(DIQLA)的车间调度方法,以解决轴承生产智能排程问题。首先,描述了轴承的排程问题,建立了以最小化最大完工时间为目标的数学模型;然后,引入马尔科夫决策过程(MDP),模拟了轴承生产排程过程,根据两阶段生产过程,搭建了双智能体交互的Q学习模型,接着对两阶段的的智能体进行了建模,设计了双智能体的状态变量、调度规则动作集和即时奖励函数,改进了传统的贪婪搜索策略,提出了两阶段联合排程算法;最后,利用实例数据对该算法进行了仿真验证,将其与单一智能体Q学习算法(QL)及非支配遗传算法(NSGA-II)、带精英策略的改进的鲸鱼优化算法(IWOA)等算法进行了对比,先在同一算例下验证了该算法的有效性,再通过对比不同订单算例,验证了该算法的性能,并利用实例数据再次验证了该算法在两阶段排程的应用效果。研究结果表明:两阶段联合排程算法在解决轴承排程问题时具有可行性,在优化轴承生产排程方面上具有较好的效果;在实际的应用中,与原有人工排产相比,其产品的加工周期平均缩减了17%,订单交付率平均提升了9%。该方法为轴承制造类企业生产排程提供了一种智能化的方案。 展开更多
关键词 轴承生产 车间调度方法 智能排程 两阶段分布式混合流水车间 Q学习 双层交互 两阶段联合排程算法
在线阅读 下载PDF
Critic特征加权的多核最小二乘孪生支持向量机 被引量:1
5
作者 贺智鹏 吕莉 +1 位作者 陈娟 康平 《信息与控制》 北大核心 2025年第1期123-136,共14页
针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,... 针对最小二乘孪生支持向量机受误差值影响大,对噪声样本敏感及核函数、核参数选择困难等问题,提出一种Critic特征加权的多核最小二乘孪生支持向量机(Multi-Kernel Least-Squares Twin Support Vector Machine based on Critic weighted,CMKLSTSVM)分类方法。首先,CMKLSTSVM使用Critic法赋予特征权重,反映不同特征间重要性差异,降低冗余特征及噪声样本影响。其次,根据混合多核学习策略构造了一种新的多核权重系数确定方法。该方法通过基核与理想核间的混合核对齐值判断核函数相似程度,确定权重系数,可以合理地组合多个核函数,最大程度地发挥不同核函数的映射能力。最后,采用加权求和的方式将特征权重与核权重进行统一并构造多核结构,使数据表达更全面,提高模型灵活性。在UCI数据集上的对比实验表明,CMKLSTSVM的分类准确率优于单核结构的SVM(support vector machine)算法,同时在高光谱图像上的对比实验反映了CMKLSTSVM对于包含噪声的真实分类问题的有效性。 展开更多
关键词 Critic权值法 混合多核学习方法 加权多核模型 孪生支持向量机 最小二乘损失函数
原文传递
基于多隐层极限学习机的产品质量预测方法 被引量:1
6
作者 丁鹏程 战洪飞 +2 位作者 林颖俊 余军合 王瑞 《计算机集成制造系统》 北大核心 2025年第11期4130-4143,共14页
在产品生产过程中,准确快速地预测产品质量有助于企业及时调整制造工艺,降低损失。针对实际生产过程中,现场采集的工艺数据存在维度高、相关性复杂且用传统方法难以准确预测的问题,提出一种基于改进多隐层极限学习机(LCGWO-DMKEA-BLSTM... 在产品生产过程中,准确快速地预测产品质量有助于企业及时调整制造工艺,降低损失。针对实际生产过程中,现场采集的工艺数据存在维度高、相关性复杂且用传统方法难以准确预测的问题,提出一种基于改进多隐层极限学习机(LCGWO-DMKEA-BLSTM)的方法。首先,通过互信息法(MI)对采集的生产工艺特征参数进行筛选,组成模型输入初始特征集。其次,将高斯核函数与反余弦核函数加权结合,构造出新的混合核函数,并引入自动编码器对极限学习机进行改进,建立深度多内核极限学习机自编码器(DMKEA)特征挖掘模型,从高维复杂工艺特征集中提取最能反映产品质量的关键特征信息,输入决策层双向长短时神经网络(BLSTM)中进行质量预测。在DMKEA学习训练中,采用基于Circle混沌映射和Levy飞行策略改进的灰狼算法(LCGWO),优化惩罚系数、核参数以及核函数组合权重,提高DMKEA的特征挖掘能力。最后用半导体薄膜晶体管液晶显示器生产线的工艺数据实验验证了所提方法的有效性。研究成果有助于企业实现准确地产品质量预测,也为企业生产的数据赋能提供参考。 展开更多
关键词 质量预测 互信息法 改进多隐层极限学习机 混合核函数 双向长短时神经网络 Circle混沌映射 Levy飞行 改进灰狼算法
在线阅读 下载PDF
FORECASTING CHINA'S FOREIGN TRADE VOLUME WITH A KERNEL-BASED HYBRID ECONOMETRIC-AI ENSEMBLE LEARNING APPROACH 被引量:5
7
作者 Lean YU Shouyang WANG Kin Keung LAI 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2008年第1期1-19,共19页
Due to the complexity of economic system and the interactive effects between all kinds of economic variables and foreign trade, it is not easy to predict foreign trade volume. However, the difficulty in predicting for... Due to the complexity of economic system and the interactive effects between all kinds of economic variables and foreign trade, it is not easy to predict foreign trade volume. However, the difficulty in predicting foreign trade volume is usually attributed to the limitation of many conventional forecasting models. To improve the prediction performance, the study proposes a novel kernel-based ensemble learning approach hybridizing econometric models and artificial intelligence (AI) models to predict China's foreign trade volume. In the proposed approach, an important econometric model, the co-integration-based error correction vector auto-regression (EC-VAR) model is first used to capture the impacts of all kinds of economic variables on Chinese foreign trade from a multivariate linear anal- ysis perspective. Then an artificial neural network (ANN) based EC-VAR model is used to capture the nonlinear effects of economic variables on foreign trade from the nonlinear viewpoint. Subsequently, for incorporating the effects of irregular events on foreign trade, the text mining and expert's judgmental adjustments are also integrated into the nonlinear ANN-based EC-VAR model. Finally, all kinds of economic variables, the outputs of linear and nonlinear EC-VAR models and judgmental adjustment model are used as input variables of a typical kernel-based support vector regression (SVR) for en- semble prediction purpose. For illustration, the proposed kernel-based ensemble learning methodology hybridizing econometric techniques and AI methods is applied to China's foreign trade volume predic- tion problem. Experimental results reveal that the hybrid econometric-AI ensemble learning approach can significantly improve the prediction performance over other linear and nonlinear models listed in this study. 展开更多
关键词 Artificial neural networks error-correction vector auto-regression foreign trade prediction hybrid ensemble learning kernel-based method support vector regression.
原文传递
A review and taxonomy of wind and solar energy forecasting methods based on deep learning 被引量:10
8
作者 Ghadah Alkhayat Rashid Mehmood 《Energy and AI》 2021年第2期136-160,共25页
Renewable energy is essential for planet sustainability.Renewable energy output forecasting has a significant impact on making decisions related to operating and managing power systems.Accurate prediction of renewable... Renewable energy is essential for planet sustainability.Renewable energy output forecasting has a significant impact on making decisions related to operating and managing power systems.Accurate prediction of renewable energy output is vital to ensure grid reliability and permanency and reduce the risk and cost of the energy market and systems.Deep learning’s recent success in many applications has attracted researchers to this field and its promising potential is manifested in the richness of the proposed methods and the increasing number of publications.To facilitate further research and development in this area,this paper provides a review of deep learning-based solar and wind energy forecasting research published during the last five years discussing extensively the data and datasets used in the reviewed works,the data pre-processing methods,deterministic and probabilistic methods,and evaluation and comparison methods.The core characteristics of all the reviewed works are summarised in tabular forms to enable methodological comparisons.The current challenges in the field and future research directions are given.The trends show that hybrid forecasting models are the most used in this field followed by Recurrent Neural Network models including Long Short-Term Memory and Gated Recurrent Unit,and in the third place Convolutional Neural Networks.We also find that probabilistic and multistep ahead forecasting methods are gaining more attention.Moreover,we devise a broad taxonomy of the research using the key insights gained from this extensive review,the taxonomy we believe will be vital in understanding the cutting-edge and accelerating innovation in this field. 展开更多
关键词 Deep learning Renewable energy forecasting Solar energy Wind energy TAXONOMY hybrid methods
在线阅读 下载PDF
Improved hybrid resampling and ensemble model for imbalance learning and credit evaluation 被引量:1
9
作者 Gang Kou Hao Chen Mohammed A.Hefni 《Journal of Management Science and Engineering》 2022年第4期511-529,共19页
A clustering-based undersampling(CUS)and distance-based near-miss method are widely used in current imbalanced learning algorithms,but this method has certain drawbacks.In particular,the CUS does not consider the infl... A clustering-based undersampling(CUS)and distance-based near-miss method are widely used in current imbalanced learning algorithms,but this method has certain drawbacks.In particular,the CUS does not consider the influence of the distance factor on the majority of instances,and the near-miss method omits the inter-class(es)within the majority of samples.To overcome these drawbacks,this study proposes an undersampling method combining distance measurement and majority class clustering.Resampling methods are used to develop an ensemble-based imbalanced-learning algorithm called the clustering and distance-based imbalance learning model(CDEILM).This algorithm combines distance-based undersampling,feature selection,and ensemble learning.In addition,a cluster size-based resampling(CSBR)method is proposed for preserving the original distribution of the majority class,and a hybrid imbalanced learning framework is constructed by fusing various types of resampling methods.The combination of CDEILM and CSBR can be considered as a specific case of this hybrid framework.The experimental results show that the CDEILM and CSBR methods can achieve better performance than the benchmark methods,and that the hybrid model provides the best results under most circumstances.Therefore,the proposed model can be used as an alternative imbalanced learning method under specific circumstances,e.g.,for providing a solution to credit evaluation problems in financial applications. 展开更多
关键词 Imbalanced learning Clustering-based under-sampling Ensemble methods hybrid methods Credit risk evaluation
原文传递
Spatial-temporal simulation and prediction of root zone soil moisture based on Hydrus-1D and CNN-LSTM-attention models in Yutian Oasis,southern Xinjiang,China
10
作者 Xiaobo LÜ Ilyas NURMEMET +4 位作者 Sentian XIAO Jing ZHAO Xinru YU Yilizhati AILI Shiqin LI 《Pedosphere》 2025年第5期846-857,共12页
Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables... Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables,including surface soil moisture(SSM),often exhibit nonlinearities that are challenging to identify and quantify using conventional statistical techniques.Therefore,this study presents a hybrid convolutional neural network(CNN)-long short-term memory neural network(LSTM)-attention(CLA)model for predicting RZSM.Owing to the scarcity of soil moisture(SM)observation data,the physical model Hydrus-1D was employed to simulate a comprehensive dataset of spatial-temporal SM.Meteorological data and moderate resolution imaging spectroradiometer vegetation characterization parameters were used as predictor variables for the training and validation of the CLA model.The results of the CLA model for SM prediction in the root zone were significantly enhanced compared with those of the traditional LSTM and CNN-LSTM models.This was particularly notable at the depth of 80–100 cm,where the fitness(R^(2))reached nearly 0.9298.Moreover,the root mean square error of the CLA model was reduced by 49%and 57%compared with those of the LSTM and CNN-LSTM models,respectively.This study demonstrates that the integration of physical modeling and deep learning methods provides a more comprehensive and accurate understanding of spatial-temporal SM variations in the root zone. 展开更多
关键词 arid region convolutional neural network deep learning method hybrid prediction model leaf area index long short-term memory neural network normalized difference vegetation index physical model surface soil moisture
原文传递
工业互联网场景下基于混合方法的轻量级DDoS攻击检测方案
11
作者 张俊峰 李滨涵 《贵阳学院学报(自然科学版)》 2025年第2期43-47,共5页
随着5G应用场景的普及,工业互联网得到大规模应用和普及,工业互联网面临的网络安全问题也层出不穷。针对工业互联网面临的DDoS攻击问题,提出了一种轻量级的工业互联网场景下DDoS攻击的检测机制。该机制首先通过主成分分析算法对海量数... 随着5G应用场景的普及,工业互联网得到大规模应用和普及,工业互联网面临的网络安全问题也层出不穷。针对工业互联网面临的DDoS攻击问题,提出了一种轻量级的工业互联网场景下DDoS攻击的检测机制。该机制首先通过主成分分析算法对海量数据流进行降维处理,提取出DDoS攻击的主要特征,然后通过朴素贝叶斯对数据流中的异常数据进行判断。该检测机制在保证相同数量级检测准确性的前提下,可有效降低计算开销,节省检测时间,整体上提高检测效果。 展开更多
关键词 混合方法 轻量级 DDOS 机器学习
在线阅读 下载PDF
基于模糊径向基函数神经网络的PID算法球磨机控制系统研究 被引量:20
12
作者 程启明 程尹曼 +1 位作者 郑勇 汪明媚 《中国电机工程学报》 EI CSCD 北大核心 2009年第35期22-28,共7页
针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采... 针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出应用于球磨机对象控制的基于模糊径向基函数神经网络的PID控制算法。在这种控制系统中,PID控制器的控制参数采用模糊径向基函数神经网络进行自适应整定,系统控制参数采用混合优化算法,即首先采用混沌粒子群优化(particle swarm optimization,PSO)算法进行离线粗调,再采用BP算法进行在线细调,从而快速全局收敛得到最佳的PID控制参数。Matlab仿真结果表明,该控制系统有效地解决了球磨机这种复杂对象的控制问题,该系统控制参数的优化算法收敛快、不易陷入局部极小点,系统控制跟踪快、超调小、解耦好、鲁棒性和适应性强,控制品质优于传统PID解耦控制方法。 展开更多
关键词 球磨机 模糊径向基函数神经网络 混合优化算法 早熟判据 PID控制
原文传递
基于改进GA-BP混合算法的电力变压器故障诊断 被引量:21
13
作者 王少芳 蔡金锭 刘庆珍 《电网技术》 EI CSCD 北大核心 2004年第4期30-33,共4页
将改进遗传算法(GA)和误差反向传播(BP)算法相结合构成的混合算法用于训练人工神经网络。该混合算法有效地解决了常规 BP 算法学习网络权值收敛速度慢、易陷入局部极小和 GA 算法独立训练神经网络速度缓慢等缺点,并对其应用于电力变压... 将改进遗传算法(GA)和误差反向传播(BP)算法相结合构成的混合算法用于训练人工神经网络。该混合算法有效地解决了常规 BP 算法学习网络权值收敛速度慢、易陷入局部极小和 GA 算法独立训练神经网络速度缓慢等缺点,并对其应用于电力变压器故障诊断进行了仿真,仿真结果表明了该算法具有较快的收敛速度和较高的计算精度,故障诊断结果证实了该算法应用于电力变压器故障诊断的有效性。 展开更多
关键词 电力变压器 故障诊断 遗传算法 人工神经网络 GA-BP混合算法 仿真
在线阅读 下载PDF
基于混合策略的关联分类方法 被引量:5
14
作者 李学明 付萌 李宾飞 《计算机应用研究》 CSCD 北大核心 2013年第3期724-727,共4页
关联分类中现有的显式学习方法无法解决small disjunction问题,而Lazy方法分类效率低。针对这两类方法存在的问题,提出了一种基于混合策略的关联分类方法。具体算法为:先判断待分类样本是否满足显式学习模式的分类器特征;然后把满足分... 关联分类中现有的显式学习方法无法解决small disjunction问题,而Lazy方法分类效率低。针对这两类方法存在的问题,提出了一种基于混合策略的关联分类方法。具体算法为:先判断待分类样本是否满足显式学习模式的分类器特征;然后把满足分类器特征的待分类样本用显式模式进行分类,把不满足分类器特征的待分类样本用Lazy模式来预测;最后结合两类方法的分类结果得到最终的分类结果。实验比较了该方法与传统的关联分类方法,结果表明,该方法在分类准确率和执行效率方面均达到了更好的效果。 展开更多
关键词 混合策略 关联分类方法 显式学习方法 Lazy方法
在线阅读 下载PDF
前馈神经网络的一种有效学习算法 被引量:6
15
作者 杜正春 刘玉田 夏道止 《电子学报》 EI CAS CSCD 北大核心 1995年第8期57-61,共5页
本文提出了基于混合GN-BFGS法进行前馈神经网络学习的新算法。该算法结合GN法与BFGS法的特点,既利用了问题本身的特殊结构,又能取得超线性甚至二次渐近收敛率。与BP算法相比,这种算法可取得更快和更可靠的学习特性,... 本文提出了基于混合GN-BFGS法进行前馈神经网络学习的新算法。该算法结合GN法与BFGS法的特点,既利用了问题本身的特殊结构,又能取得超线性甚至二次渐近收敛率。与BP算法相比,这种算法可取得更快和更可靠的学习特性,在学习过程中利用该方法能够区分非零残量和零残量问题的特点,提出了自动调整隐单元数的方法,从而可以保证网络的学习与归纳能力。示例系统的结果表明了所提方法的有效性。 展开更多
关键词 前馈神经网络 学习算法 混合GN-BFGS法
在线阅读 下载PDF
基于混合方法的流量测量系统(英文) 被引量:5
16
作者 孙广路 郎非 杨明明 《电机与控制学报》 EI CSCD 北大核心 2011年第6期91-96,共6页
流量测量是流量控制和管理中的关键问题。传统方法对于当今网络中大量出现的具备动态端口、加密载荷信息或未知协议载荷特征等特点的流量无法进行有效地测量。虽然基于机器学习模型的测量方法能够在一定程度上解决上述问题,但是由于现... 流量测量是流量控制和管理中的关键问题。传统方法对于当今网络中大量出现的具备动态端口、加密载荷信息或未知协议载荷特征等特点的流量无法进行有效地测量。虽然基于机器学习模型的测量方法能够在一定程度上解决上述问题,但是由于现有特征的区分能力有限,该类方法单独使用时,难以在大规模的真实网络流量中准确地测量出某种特定协议的流量。为了解决流量测量问题,提出了基于混合方法的流量测量系统,融合了基于端口、基于特征串匹配、基于正则表达式匹配和基于机器学习模型的多种流量测量方法。在构建系统框架和相关模块的基础上,应用一种混合方法解决了基于安全套接层协议的流量测量和应用层协议分析问题。实验结果表明,该混合方法能够测量出超过99%的基于安全套接层协议的流量,并有效地分析其中不同应用层协议的流量,准确率达到93.76%。此外,在稳定而可行的内存占用率下,系统能够良好运行,总体测量结果优于开源软件OpenDPI的结果。 展开更多
关键词 流量控制和管理 流量测量 混合方法 机器学习模型
在线阅读 下载PDF
基于混合距离学习的双指数模糊C均值算法 被引量:23
17
作者 王骏 王士同 《软件学报》 EI CSCD 北大核心 2010年第8期1878-1888,共11页
提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距... 提出了一种基于DI-FCM(double indices fuzzy C-means)算法框架的无监督距离学习算法——基于混合距离学习的双指数模糊C均值算法HDDI-FCM(double indices fuzzy C-m eans with hybrid distance).数据集未知距离度量被表示为若干已有距离的线性组合,然后执行HDDI-FCM,在对数据集进行有效聚类的同时进行距离学习.为了保证迭代算法收敛,引入了Steffensen迭代法来改进计算簇中心点的迭代公式.讨论了算法中参数的选择.基于UCI(University of California,Irvine)数据集的实验结果表明该算法是有效的. 展开更多
关键词 距离学习 聚类 模糊C均值算法 混合距离 Steffensen迭代法
在线阅读 下载PDF
基于混合学习算法的RBF神经网络主蒸汽温度控制 被引量:6
18
作者 王杰 姜国强 王栓 《热力发电》 CAS 北大核心 2009年第2期28-31,36,共5页
针对火电厂主蒸汽温度的大迟延、模型不确定性特点,提出一种使用径向基(RBF)神经网络整定PID串级主蒸汽温度控制策略。采用一种最近邻聚类法和梯度下降法相结合的混合学习算法构造RBF神经网络,在线辨识被控对象并对PID主控制器参数进行... 针对火电厂主蒸汽温度的大迟延、模型不确定性特点,提出一种使用径向基(RBF)神经网络整定PID串级主蒸汽温度控制策略。采用一种最近邻聚类法和梯度下降法相结合的混合学习算法构造RBF神经网络,在线辨识被控对象并对PID主控制器参数进行在线调整。仿真结果表明,基于混合学习算法的RBF神经网络PID控制器具有控制精度高、响应速度快的优点,系统动态品质优于常规算法的RBF神经网络PID控制。 展开更多
关键词 火电厂 主蒸汽温度 控制 最近邻聚类法 梯度下降法 混合学习算法 RBF神经网络 PID
在线阅读 下载PDF
基于人机混合智能的联合作战仿真实验方法研究 被引量:2
19
作者 马骏 杨镜宇 吴曦 《系统仿真学报》 CAS CSCD 北大核心 2021年第10期2323-2334,共12页
针对联合作战仿真实验方法多以指导装备评估论证为主,难以有效支撑作战问题研究的难点,提出了基于人机混合智能的联合作战仿真实验方法。明确了面向联合作战仿真实验中知识的分类及其产生和积累过程,通过对实验交互过程、实验运行流程... 针对联合作战仿真实验方法多以指导装备评估论证为主,难以有效支撑作战问题研究的难点,提出了基于人机混合智能的联合作战仿真实验方法。明确了面向联合作战仿真实验中知识的分类及其产生和积累过程,通过对实验交互过程、实验运行流程、实验驱动方式、仿真运行方式、支撑系统结构等方面的详细描述,构建了基于人机混合智能的联合作战仿真实验框架,为依托仿真实验进行作战能力分析、作战方案创新、作战概念开发等研究提供了新了方法。 展开更多
关键词 作战仿真 实验方法 人机混合智能 强化学习
原文传递
高层建筑风振反应的T-S模糊控制 被引量:2
20
作者 张旭红 许美贤 张善元 《系统仿真学报》 CAS CSCD 2003年第4期587-589,共3页
研究了高层建筑在顺风向脉动风荷载激励下T—S模糊控制问题。受控结构为拟建于澳大利亚Melbourne的一幢钢筋混凝土结构办公楼,高306米,总共76层,控制设备为安装于结构最顶层的主动调谐质量阻尼器,主动控制力由T-S型模糊控制器求得。选取... 研究了高层建筑在顺风向脉动风荷载激励下T—S模糊控制问题。受控结构为拟建于澳大利亚Melbourne的一幢钢筋混凝土结构办公楼,高306米,总共76层,控制设备为安装于结构最顶层的主动调谐质量阻尼器,主动控制力由T-S型模糊控制器求得。选取LQG控制的仿真结果为T-S模糊控制器的学习样本,采用减法聚类法和混合学习算法对T-S模型进行结构与参数辨识,通过改变结构刚度来检验模糊控制器的鲁棒性。仿真结果表明:T-S模糊控制器鲁棒性好,控制效果能够满足高层建筑风振舒适度的要求;与Mamdani型控制器相比,在线计算时间短,无计算时滞问题。 展开更多
关键词 高层建筑 T—S模糊控制 模糊控制器 风振反应 钢筋混凝土结构
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部