The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface inject...The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.展开更多
Agile earth observation satellites(AEOSs)represent a new generation of satellites with three degrees of freedom(pitch,roll,and yaw);they possess a long visible time window(VTW)for ground targets and support imaging at...Agile earth observation satellites(AEOSs)represent a new generation of satellites with three degrees of freedom(pitch,roll,and yaw);they possess a long visible time window(VTW)for ground targets and support imaging at any moment within the VTW.However,different observation times demonstrate different cloud cover distributions,which exhibit different effects on the AEOS observation.Previous studies ignored pitch angles,discretized VTWs,or fixed cloud cover for every VTW,which led to the loss of intermediate observation states,thus these studies are not suitable for AEOS scheduling considering cloud cover distribution.In this study,a relationship formula between the cloud cover and observation time is proposed to calculate the cloud cover for every observation time,and a relationship formula between the observation time and pitch angle is designed to calculate the pitch angle for every observation time in the VTW.A refined model including the pitch angle,roll angle,and cloud cover distribution is established,which can make the scheme closer to the actual application of AEOSs.A hybrid genetic simulated annealing(HGSA)algorithm for AEOS scheduling is proposed,which integrates the advantages of genetic and simulated annealing algorithms and can effectively avoid falling into a local optimal solution.The experiments are conducted to compare the proposed algorithm with the traditional algorithms,the results verify that the proposed model and algorithm are efficient and effective for AEOS scheduling considering cloud cover distribution.展开更多
To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm ...To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front.展开更多
Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybr...Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data.展开更多
Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle,few researches about the series-parallel hybrid electric vehicle have been ...Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle,few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy.In this paper,a series-parallel hybrid electric bus as well as its control strategy is revealed,and a control parameter optimization approach using the real-valued genetic algorithm is proposed.The optimization objective is to minimize the fuel consumption while sustain the battery state of charge,a tangent penalty function of state of charge(SOC)is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem.For this strategy,the vehicle operating mode is switched based on the vehicle speed,and an"optimal line"typed strategy is designed for the parallel control.The optimization parameters include the speed threshold for mode switching,the highest state of charge allowed,the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed.They are optimized through numerical experiments based on real-value genes,arithmetic crossover and mutation operators.The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test,in which a control area network-based monitor system was used to trace the driving schedule.The test result shows that this approach is feasible for the control parameter optimization.This approach can be applied to not only the novel construction presented in this paper,but also other types of hybrid electric vehicles.展开更多
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome...Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.展开更多
The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high a...The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high accuracy in modelling the reflection coefficients.However,amplitude inversion based on it is highly nonlinear,thus,requires nonlinear inversion techniques like the genetic algorithm(GA)which has been widely applied in seismology.The quantum genetic algorithm(QGA)is a variant of the GA that enjoys the advantages of quantum computing,such as qubits and superposition of states.It,however,suffers from limitations in the areas of convergence rate and escaping local minima.To address these shortcomings,in this study,we propose a hybrid quantum genetic algorithm(HQGA)that combines a self-adaptive rotating strategy,and operations of quantum mutation and catastrophe.While the selfadaptive rotating strategy improves the flexibility and efficiency of a quantum rotating gate,the operations of quantum mutation and catastrophe enhance the local and global search abilities,respectively.Using the exact Zoeppritz equation,the HQGA was applied to both synthetic and field seismic data inversion and the results were compared to those of the GA and QGA.A number of the synthetic tests show that the HQGA requires fewer searches to converge to the global solution and the inversion results have generally higher accuracy.The application to field data reveals a good agreement between the inverted parameters and real logs.展开更多
The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.Th...The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.展开更多
Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameter...Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algo- rithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm.展开更多
Driven by the new legislation on greenhouse gas emissions,carriers began to use electric vehicles(EVs)for logistics transportation.This paper addresses an electric vehicle routing problem with time windows(EVRPTW).The...Driven by the new legislation on greenhouse gas emissions,carriers began to use electric vehicles(EVs)for logistics transportation.This paper addresses an electric vehicle routing problem with time windows(EVRPTW).The electricity consumption of EVs is expressed by the battery state-of-charge(SoC).To make it more realistic,we take into account the terrain grades of roads,which affect the travel process of EVs.Within our work,the battery SoC dynamics of EVs are used to describe this situation.We aim to minimize the total electricity consumption while serving a set of customers.To tackle this problem,we formulate the problem as a mixed integer programming model.Furthermore,we develop a hybrid genetic algorithm(GA)that combines the 2-opt algorithm with GA.In simulation results,by the comparison of the simulated annealing(SA)algorithm and GA,the proposed approach indicates that it can provide better solutions in a short time.展开更多
This paper dealt with composite scheduling problems which combine manufacturing scheduling problems and/or transportation routing problems.Two scheduling models were formulated as the elements of the composite schedul...This paper dealt with composite scheduling problems which combine manufacturing scheduling problems and/or transportation routing problems.Two scheduling models were formulated as the elements of the composite scheduling model,and the composite model was formulated composing these models with indispensable additional constraints.A hybrid genetic algorithm was developed to solve the composite scheduling problems.An improved representation based on random keys was developed to search permutation space.A genetic algorithm based dynamic programming approach was applied to select resource.The proposed technique and a previous technique are compared by three types of problems.All results indicate that the proposed technique is superior to the previous one.展开更多
We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expe...We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local search crossover operator and the double-bridge random mutation are highlighted, to enhance the convergence and the possibility of escaping from the local optima. The experimental results illustrate that the novel hybrid genetic algorithm outperforms other genetic algorithms by providing higher accuracy and satisfactory efficiency in real optimization processing.展开更多
Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring securit...Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.展开更多
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e...This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.展开更多
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ...A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.展开更多
Secure storage yard is one of the optimal core goals of container transportation;thus,making the necessary storage arrangements has become the most crucial part of the container terminal management systems(CTMS).Thi...Secure storage yard is one of the optimal core goals of container transportation;thus,making the necessary storage arrangements has become the most crucial part of the container terminal management systems(CTMS).This paper investigates a random hybrid stacking algorithm(RHSA) for outbound containers that randomly enter the yard.In the first stage of RHSA,the distribution among blocks was analyzed with respect to the utilization ratio.In the second stage,the optimization of bay configuration was carried out by using the hybrid genetic algorithm.Moreover,an experiment was performed to test the RHSA.The results show that the explored algorithm is useful to increase the efficiency.展开更多
Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated i...Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated into GA. Powell had the effectivecapacity of solving the local optimal solution. Powell and the cross as a method ofchoice, a variation of the parallel operator, can be a better solution to the prematureconvergence of the GA problem. The two methods will be improved to make it an effective combination of hybrid GA called hybrid genetic algorithm (HGA) for the introductionof mine ventilation network optimization and to be used to solve the problem of regulating mine optimization.展开更多
For massive order allocation problem of the third party logistics (TPL) in ecommerce, this paper proposes a general order allocation model based on cloud architecture and hybrid genetic algorithm (GA), implementin...For massive order allocation problem of the third party logistics (TPL) in ecommerce, this paper proposes a general order allocation model based on cloud architecture and hybrid genetic algorithm (GA), implementing cloud deployable MapReduce (MR) code to parallelize allocation process, using heuristic rule to fix illegal chromosome during encoding process and adopting mixed integer programming (MIP) as fitness flmction to guarantee rationality of chromosome fitness. The simulation experiment shows that in mass processing of orders, the model performance in a multi-server cluster environment is remarkable superior to that in stand-alone environment. This model can be directly applied to cloud based logistics information platform (LIP) in near future, implementing fast auto-allocation for massive concurrent orders, with great application value.展开更多
As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcomi...As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.展开更多
The gear transmission system has been widely applied in mechanical systems,and many high-performance applications of these systems require low weight.With the aid of establishing the optimization model of the gear tra...The gear transmission system has been widely applied in mechanical systems,and many high-performance applications of these systems require low weight.With the aid of establishing the optimization model of the gear transmission system that consists of an objective function and some constraints(for example,the bending stress,the contact stress,the torsional strength,etc.),the optimal weight design of the gear transmission system can be transformed into the optimization problem for the objective function under the constraints.Moreover,both the shaft and the gear of the gear transmission system are considered simultaneously in our design.The hybrid Taguchi-genetic algorithm(HTGA)is employed to find the optimal design variables and the optimal weight of the system.An illustrated example for the single spur gear reducer is given to show that the optimal weight design problem can be successfully solved using the proposed design scheme.It also proves the high efficiency and feasibility of the algorithm in the gear design.展开更多
基金the National Natural Science Foundation of China,grant numbers 51704253 and 52474084.
文摘The surface injection and production system(SIPS)is a critical component for effective injection and production processes in underground natural gas storage.As a vital channel,the rational design of the surface injection and production(SIP)pipeline significantly impacts efficiency.This paper focuses on the SIP pipeline and aims to minimize the investment costs of surface projects.An optimization model under harmonized injection and production conditions was constructed to transform the optimization problem of the SIP pipeline design parameters into a detailed analysis of the injection condition model and the production condition model.This paper proposes a hybrid genetic algorithm generalized reduced gradient(HGA-GRG)method,and compares it with the traditional genetic algorithm(GA)in a practical case study.The HGA-GRG demonstrated significant advantages in optimization outcomes,reducing the initial cost by 345.371×10^(4) CNY compared to the GA,validating the effectiveness of the model.By adjusting algorithm parameters,the optimal iterative results of the HGA-GRG were obtained,providing new research insights for the optimal design of a SIPS.
基金supported by the National Natural Science Foundation of China(72071064,72271074,72001004)the Anhui Provincial Natural Science Foundation(2408085QG221).
文摘Agile earth observation satellites(AEOSs)represent a new generation of satellites with three degrees of freedom(pitch,roll,and yaw);they possess a long visible time window(VTW)for ground targets and support imaging at any moment within the VTW.However,different observation times demonstrate different cloud cover distributions,which exhibit different effects on the AEOS observation.Previous studies ignored pitch angles,discretized VTWs,or fixed cloud cover for every VTW,which led to the loss of intermediate observation states,thus these studies are not suitable for AEOS scheduling considering cloud cover distribution.In this study,a relationship formula between the cloud cover and observation time is proposed to calculate the cloud cover for every observation time,and a relationship formula between the observation time and pitch angle is designed to calculate the pitch angle for every observation time in the VTW.A refined model including the pitch angle,roll angle,and cloud cover distribution is established,which can make the scheme closer to the actual application of AEOSs.A hybrid genetic simulated annealing(HGSA)algorithm for AEOS scheduling is proposed,which integrates the advantages of genetic and simulated annealing algorithms and can effectively avoid falling into a local optimal solution.The experiments are conducted to compare the proposed algorithm with the traditional algorithms,the results verify that the proposed model and algorithm are efficient and effective for AEOS scheduling considering cloud cover distribution.
基金National Basic Research Program of China(5132004)
文摘To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front.
基金The project supported by the National Natural Science Foundation of China (10472025)
文摘Vibration dynamic characteristics have been a major issue in the modeling and mechanical analysis of large hydro generators. An algorithm is developed for identifying vibration dynamic characteristics by means of hybrid genetic algorithm. From the measured dynamic responses of a hydro generator, an appropriate estimation algorithm is needed to identify the loading parameters, including the main frequencies and amplitudes of vibrating forces. In order to identify parameters in an efficient and robust manner, an optimization method is proposed that combines genetic algorithm with simulated annealing and elitist strategy. The hybrid genetic algorithm is then used to tackle an ill-posed problem of parameter identification, in which the effectiveness of the proposed optimization method is confirmed by its comparison with actual observation data.
基金supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2006AA11A127)
文摘Despite the series-parallel hybrid electric vehicle inherits the performance advantages from both series and parallel hybrid electric vehicle,few researches about the series-parallel hybrid electric vehicle have been revealed because of its complex co nstruction and control strategy.In this paper,a series-parallel hybrid electric bus as well as its control strategy is revealed,and a control parameter optimization approach using the real-valued genetic algorithm is proposed.The optimization objective is to minimize the fuel consumption while sustain the battery state of charge,a tangent penalty function of state of charge(SOC)is embodied in the objective function to recast this multi-objective nonlinear optimization problem as a single linear optimization problem.For this strategy,the vehicle operating mode is switched based on the vehicle speed,and an"optimal line"typed strategy is designed for the parallel control.The optimization parameters include the speed threshold for mode switching,the highest state of charge allowed,the lowest state of charge allowed and the scale factor of the engine optimal torque to the engine maximum torque at a rotational speed.They are optimized through numerical experiments based on real-value genes,arithmetic crossover and mutation operators.The hybrid bus has been evaluated at the Chinese Transit Bus City Driving Cycle via road test,in which a control area network-based monitor system was used to trace the driving schedule.The test result shows that this approach is feasible for the control parameter optimization.This approach can be applied to not only the novel construction presented in this paper,but also other types of hybrid electric vehicles.
基金the Open Fund(PLC201104)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)the National Natural Science Foundation of China(No.61072073)the Key Project of Education Commission of Sichuan Province(No.10ZA072)
文摘Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.
基金supported by the National Natural Science Foundation of China(U19B6003,42122029)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX 202003)partially supported by SEG/WesternGeco Scholarship,SEG Foundation/Chevron Scholarship,and SEG/Norman and Shirley Domenico Scholarship
文摘The amplitude versus offset/angle(AVO/AVA)inversion which recovers elastic properties of subsurface media is an essential tool in oil and gas exploration.In general,the exact Zoeppritz equation has a relatively high accuracy in modelling the reflection coefficients.However,amplitude inversion based on it is highly nonlinear,thus,requires nonlinear inversion techniques like the genetic algorithm(GA)which has been widely applied in seismology.The quantum genetic algorithm(QGA)is a variant of the GA that enjoys the advantages of quantum computing,such as qubits and superposition of states.It,however,suffers from limitations in the areas of convergence rate and escaping local minima.To address these shortcomings,in this study,we propose a hybrid quantum genetic algorithm(HQGA)that combines a self-adaptive rotating strategy,and operations of quantum mutation and catastrophe.While the selfadaptive rotating strategy improves the flexibility and efficiency of a quantum rotating gate,the operations of quantum mutation and catastrophe enhance the local and global search abilities,respectively.Using the exact Zoeppritz equation,the HQGA was applied to both synthetic and field seismic data inversion and the results were compared to those of the GA and QGA.A number of the synthetic tests show that the HQGA requires fewer searches to converge to the global solution and the inversion results have generally higher accuracy.The application to field data reveals a good agreement between the inverted parameters and real logs.
基金Supported by the National Natural Science Foundation of China(1117202591116)
文摘The genetic/gradient-based hybrid algorithm is introduced and used in the design studies of aeroelastic optimization of large aircraft wings to attain skin distribution,stiffness distribution and design sensitivity.The program of genetic algorithm is developed by the authors while the gradient-based algorithm borrows from the modified method for feasible direction in MSC/NASTRAN software.In the hybrid algorithm,the genetic algorithm is used to perform global search to avoid to fall into local optima,and then the excellent individuals of every generation optimized by the genetic algorithm are further fine-tuned by the modified method for feasible direction to attain the local optima and hence to get global optima.Moreover,the application effects of hybrid genetic algorithm in aeroelastic multidisciplinary design optimization of large aircraft wing are discussed,which satisfy multiple constraints of strength,displacement,aileron efficiency,and flutter speed.The application results show that the genetic/gradient-based hybrid algorithm is available for aeroelastic optimization of large aircraft wings in initial design phase as well as detailed design phase,and the optimization results are very consistent.Therefore,the design modifications can be decreased using the genetic/gradient-based hybrid algorithm.
文摘Aerodynamic parameters are important factors that affect projectile flight movement. To obtain accurate aerodynamic parameters, a hybrid genetic algorithm is proposed to identify and optimize the aerodynamic parameters of projectile. By combining the traditional simulated annealing method that is easy to fall into local optimum solution but hard to get global parameters with the genetic algorithm that has good global optimization ability but slow local optimization ability, the hybrid genetic algo- rithm makes full use of the advantages of the two algorithms for the optimization of projectile aerodynamic parameters. The simulation results show that the hybrid genetic algorithm is better than a single algorithm.
文摘Driven by the new legislation on greenhouse gas emissions,carriers began to use electric vehicles(EVs)for logistics transportation.This paper addresses an electric vehicle routing problem with time windows(EVRPTW).The electricity consumption of EVs is expressed by the battery state-of-charge(SoC).To make it more realistic,we take into account the terrain grades of roads,which affect the travel process of EVs.Within our work,the battery SoC dynamics of EVs are used to describe this situation.We aim to minimize the total electricity consumption while serving a set of customers.To tackle this problem,we formulate the problem as a mixed integer programming model.Furthermore,we develop a hybrid genetic algorithm(GA)that combines the 2-opt algorithm with GA.In simulation results,by the comparison of the simulated annealing(SA)algorithm and GA,the proposed approach indicates that it can provide better solutions in a short time.
基金Project supported by the Grant-in-Aid for Young Scientists (B) from the Ministry of Education,Culture,Sports,Science and Technology,Japan
文摘This paper dealt with composite scheduling problems which combine manufacturing scheduling problems and/or transportation routing problems.Two scheduling models were formulated as the elements of the composite scheduling model,and the composite model was formulated composing these models with indispensable additional constraints.A hybrid genetic algorithm was developed to solve the composite scheduling problems.An improved representation based on random keys was developed to search permutation space.A genetic algorithm based dynamic programming approach was applied to select resource.The proposed technique and a previous technique are compared by three types of problems.All results indicate that the proposed technique is superior to the previous one.
文摘We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local search crossover operator and the double-bridge random mutation are highlighted, to enhance the convergence and the possibility of escaping from the local optima. The experimental results illustrate that the novel hybrid genetic algorithm outperforms other genetic algorithms by providing higher accuracy and satisfactory efficiency in real optimization processing.
文摘Accurate prediction of the movement trajectory of sea surface targets holds significant importance in achieving an advantageous position in the sea battle field.This prediction plays a crucial role in ensuring security defense and confrontation,and is essential for effective deployment of military strategy.Accurately predicting the trajectory of sea surface targets using AIS(Automatic Identification System)information is crucial for security defense and confrontation,and holds significant importance for military strategy deployment.In response to the problem of insufficient accuracy in ship trajectory prediction,this study proposes a hybrid genetic algorithm to optimize the Long Short-Term Memory(LSTM)algorithm.The HGA-LSTM algorithm is proposed for ship trajectory prediction.It can converge faster and obtain better parameter solutions,thereby improving the effectiveness of ship trajectory prediction.Compared to traditional LSTM and GA-LSTM algorithms,experimental results demonstrate that this algorithm outperforms them in both single-step and multi-step prediction.
文摘This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods.
基金Supported by the Natural Science Foundation of Jiangsu Province (No.BK2004016).
文摘A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.
基金Supported by the Research Grants from Shanghai Municipal Natural Science Foundation(No.10190502500) Shanghai Maritime University Start-up Funds,Shanghai Science&Technology Commission Projects(No.09DZ2250400) Shanghai Education Commission Project(No.J50604)
文摘Secure storage yard is one of the optimal core goals of container transportation;thus,making the necessary storage arrangements has become the most crucial part of the container terminal management systems(CTMS).This paper investigates a random hybrid stacking algorithm(RHSA) for outbound containers that randomly enter the yard.In the first stage of RHSA,the distribution among blocks was analyzed with respect to the utilization ratio.In the second stage,the optimization of bay configuration was carried out by using the hybrid genetic algorithm.Moreover,an experiment was performed to test the RHSA.The results show that the explored algorithm is useful to increase the efficiency.
基金Supported by the National Natural Science Foundation of China(60772159)
文摘Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated into GA. Powell had the effectivecapacity of solving the local optimal solution. Powell and the cross as a method ofchoice, a variation of the parallel operator, can be a better solution to the prematureconvergence of the GA problem. The two methods will be improved to make it an effective combination of hybrid GA called hybrid genetic algorithm (HGA) for the introductionof mine ventilation network optimization and to be used to solve the problem of regulating mine optimization.
基金Foundation item: the National Science & Technology Pillar Program (Nos. 2011BAH21B02 and 2011BAH21B03) and the Chengdu Major Scientific and Technological Achievements (No. 11zHzD038)
文摘For massive order allocation problem of the third party logistics (TPL) in ecommerce, this paper proposes a general order allocation model based on cloud architecture and hybrid genetic algorithm (GA), implementing cloud deployable MapReduce (MR) code to parallelize allocation process, using heuristic rule to fix illegal chromosome during encoding process and adopting mixed integer programming (MIP) as fitness flmction to guarantee rationality of chromosome fitness. The simulation experiment shows that in mass processing of orders, the model performance in a multi-server cluster environment is remarkable superior to that in stand-alone environment. This model can be directly applied to cloud based logistics information platform (LIP) in near future, implementing fast auto-allocation for massive concurrent orders, with great application value.
文摘As the traditional non-linear systems generally based on gradient descent optimization method have some shortage in the field of groundwater level prediction, the paper, according to structure, algorithm and shortcoming of the conventional radial basis function neural network (RBF NN), presented a new improved genetic algorithm (GA): hybrid hierarchy genetic algorithm (HHGA). In training RBF NN, the algorithm can automatically determine the structure and parameters of RBF based on the given sample data. Compared with the traditional groundwater level prediction model based on back propagation (BP) or RBF NN, the new prediction model based on HHGA and RBF NN can greatly increase the convergence speed and precision.
基金Supported by the Fundamental Research Funds for the Central Universities(20102080201000085)the National Natural Science Foundation of China(50875189)
文摘The gear transmission system has been widely applied in mechanical systems,and many high-performance applications of these systems require low weight.With the aid of establishing the optimization model of the gear transmission system that consists of an objective function and some constraints(for example,the bending stress,the contact stress,the torsional strength,etc.),the optimal weight design of the gear transmission system can be transformed into the optimization problem for the objective function under the constraints.Moreover,both the shaft and the gear of the gear transmission system are considered simultaneously in our design.The hybrid Taguchi-genetic algorithm(HTGA)is employed to find the optimal design variables and the optimal weight of the system.An illustrated example for the single spur gear reducer is given to show that the optimal weight design problem can be successfully solved using the proposed design scheme.It also proves the high efficiency and feasibility of the algorithm in the gear design.