期刊文献+
共找到375篇文章
< 1 2 19 >
每页显示 20 50 100
Medical Image Segmentation using PCNN based on Multi-feature Grey Wolf Optimizer Bionic Algorithm 被引量:7
1
作者 Xue Wang Zhanshan Li +2 位作者 Heng Kang Yongping Huang Di Gai 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第3期711-720,共10页
Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PC... Medical image segmentation is a challenging task especially in multimodality medical image analysis.In this paper,an improved pulse coupled neural network based on multiple hybrid features grey wolf optimizer(MFGWO-PCNN)is proposed for multimodality medical image segmentation.Specifically,a two-stage medical image segmentation method based on bionic algorithm is presented,including image fusion and image segmentation.The image fusion stage fuses rich information from different modalities by utilizing a multimodality medical image fusion model based on maximum energy region.In the stage of image segmentation,an improved PCNN model based on MFGWO is proposed,which can adaptively set the parameters of PCNN according to the features of the image.Two modalities of FLAIR and TIC brain MRIs are applied to verify the effectiveness of the proposed MFGWO-PCNN algorithm.The experimental results demonstrate that the proposed method outperforms the other seven algorithms in subjective vision and objective evaluation indicators. 展开更多
关键词 grey wolf optimizer pulse coupled neural network bionic algorithm medical image segmentation
在线阅读 下载PDF
Discrete Improved Grey Wolf Optimizer for Community Detection 被引量:2
2
作者 Mohammad H.Nadimi-Shahraki Ebrahim Moeini +1 位作者 Shokooh Taghian Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2331-2358,共28页
Detecting communities in real and complex networks is a highly contested topic in network analysis.Although many metaheuristic-based algorithms for community detection have been proposed,they still cannot effectively ... Detecting communities in real and complex networks is a highly contested topic in network analysis.Although many metaheuristic-based algorithms for community detection have been proposed,they still cannot effectively fulfill large-scale and real-world networks.Thus,this paper presents a new discrete version of the Improved Grey Wolf Optimizer(I-GWO)algorithm named DI-GWOCD for effectively detecting communities of different networks.In the proposed DI-GWOCD algorithm,I-GWO is first armed using a local search strategy to discover and improve nodes placed in improper communities and increase its ability to search for a better solution.Then a novel Binary Distance Vector(BDV)is introduced to calculate the wolves’distances and adapt I-GWO for solving the discrete community detection problem.The performance of the proposed DI-GWOCD was evaluated in terms of modularity,NMI,and the number of detected communities conducted by some well-known real-world network datasets.The experimental results were compared with the state-of-the-art algorithms and statistically analyzed using the Friedman and Wilcoxon tests.The comparison and the statistical analysis show that the proposed DI-GWOCD can detect the communities with higher quality than other comparative algorithms. 展开更多
关键词 Community detection Complex network OPTIMIZATION Metaheuristic algorithms Swarm intelligence algorithms grey wolf optimizer algorithm
在线阅读 下载PDF
Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints
3
作者 G.R.Venkatakrishnan R.Rengaraj S.Salivahanan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期25-45,共21页
A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimizati... A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimization problem which reduces the total cost in generating real power without violating the constraints.Conventional methods can solve the ELD problem with good solution quality with assumptions assigned to fuel cost curves without which these methods lead to suboptimal or infeasible solutions.The behavior of grey wolves which is mimicked in the GWO algorithm are leadership hierarchy and hunting mechanism.The leadership hierarchy is simulated using four types of grey wolves.In addition,searching,encircling and attacking of prey are the social behaviors implemented in the hunting mechanism.The GWO algorithm has been applied to solve convex RPED problems considering the all possible constraints.The results obtained from GWO algorithm are compared with other state-ofthe-art algorithms available in the recent literatures.It is found that the GWO algorithm is able to provide better solution quality in terms of cost,convergence and robustness for the considered ELD problems. 展开更多
关键词 grey wolf optimization(GWO) constraints power generation DISPATCH EVOLUTIONARY computation computational COMPLEXITY algorithms
在线阅读 下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
4
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(GWO) manhattan distance symmetric coordinates
在线阅读 下载PDF
Multi-objective Trajectory Planning Method based on the Improved Elitist Non-dominated Sorting Genetic Algorithm 被引量:5
5
作者 Zesheng Wang Yanbiao Li +3 位作者 Kun Shuai Wentao Zhu Bo Chen Ke Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期70-84,共15页
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob... Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators. 展开更多
关键词 hybrid manipulator Bezier curve improved optimization algorithm Trajectory planning Multi-objective optimization
在线阅读 下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
6
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
7
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
Biological Network Modeling Based on Hill Function and Hybrid Evolutionary Algorithm
8
作者 Sanrong Liu Haifeng Wang 《国际计算机前沿大会会议论文集》 2019年第2期192-194,共3页
Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a H... Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods. 展开更多
关键词 Gene REGULATORY network HILL FUNCTION grey wolf optimization hybrid EVOLUTIONARY algorithm Ordinary differential equation
在线阅读 下载PDF
Two-to-one differential game via improved MOGWO 被引量:1
9
作者 BAI Yu ZHOU Di +2 位作者 ZHANG Bolun HE Zhen HE Ping 《Journal of Systems Engineering and Electronics》 2025年第1期233-255,共23页
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ... When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage. 展开更多
关键词 differential game improved multi-objective grey wolf optimization(IMOGWO) cooperative pursuit optimal game point
在线阅读 下载PDF
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
10
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 grey wolf Optimization (GWO) Metaheuristic algorithm Optimization Problems Agents’ Positions Leader Wolves Optimal Fitness Values Optimization Challenges
在线阅读 下载PDF
Two-stage optimization of route,speed,and energy management for hybrid energy ship under sea conditions
11
作者 Xiaoyuan Luo Jiaxuan Wang +1 位作者 Xinyu Wang Xinping Guan 《iEnergy》 2025年第3期174-192,共19页
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an... As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group. 展开更多
关键词 hybrid ship power system two-stage optimization dispatch speed scheduling sea conditions modified A-star algorithm improved grey wolf optimization algorithm
在线阅读 下载PDF
Localization of Acoustic Emission Source in Rock Using SMIGWO Algorithm
12
作者 Jiong Wei Fuqiang Gao +2 位作者 Jinfu Lou Lei Yang Xiaoqing Wang 《International Journal of Coal Science & Technology》 2025年第2期42-51,共10页
The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and con... The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and convergence speed.To address these concerns,this paper develops a Simplex Improved Grey Wolf Optimizer(SMIGWO)algorithm.The randomly generating initial populations are replaced with the iterative chaotic sequences.The search process is optimized using the convergence factor optimization algorithm based on the inverse incompleteГfunction.The simplex method is utilized to address issues related to poorly positioned grey wolves.Experimental results demonstrate that,compared to the conventional GWO algorithm-based AE localization algorithm,the proposed algorithm achieves a higher solution accuracy and showcases a shorter search time.Additionally,the algorithm demonstrates fewer convergence steps,indicating superior convergence efficiency.These findings highlight that the proposed SMIGWO algorithm offers enhanced solution accuracy,stability,and optimization performance.The benefits of the SMIGWO algorithm extend universally across various materials,such as aluminum,granite,and sandstone,showcasing consistent effectiveness irrespective of material type.Consequently,this algorithm emerges as a highly effective tool for identifying acoustic emission signals and improving the precision of rock acoustic emission localization. 展开更多
关键词 Acoustic emission Source localization Iterative chaotic mapping Simplex method grey wolf optimizer algorithm
在线阅读 下载PDF
Application of interval type-2 TSK FLS method based on IGWO algorithm in short-term photovoltaic power forecasting
13
作者 LI Jun ZENG Yuxiang 《Journal of Measurement Science and Instrumentation》 2025年第2期258-271,共14页
For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compare... For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compared with the type-1 TSK fuzzy logic system method,interval type-2 fuzzy sets could simultaneously model both intra-personal uncertainty and inter-personal uncertainty based on the training of the existing error back propagation(BP)algorithm,and the IGWO algorithm was used for training the model premise and consequent parameters to further improve the predictive performance of the model.By improving the gray wolf optimization algorithm,the early convergence judgment mechanism,nonlinear cosine adjustment strategy,and Levy flight strategy were introduced to improve the convergence speed of the algorithm and avoid the problem of falling into local optimum.The interval type-2 TSK FLS method based on the IGWO algorithm was applied to the real-world photovoltaic power time series forecasting instance.Under the same conditions,it was also compared with different IT2 TSK FLS methods,such as type I TSK FLS method,BP algorithm,genetic algorithm,differential evolution,particle swarm optimization,biogeography optimization,gray wolf optimization,etc.Experimental results showed that the proposed method based on IGWO algorithm outperformed other methods in performance,showing its effectiveness and application potential. 展开更多
关键词 photovoltaic power interval type-2 fuzzy logic system grey wolf optimizer algorithm forecast performance of model
在线阅读 下载PDF
Maximum Power Point Tracking Control of Offshore Wind-Photovoltaic Hybrid Power Generation System with Crane-Assisted
14
作者 Xiangyang Cao Yaojie Zheng +1 位作者 Hanbin Xiao Min Xiao 《Computer Modeling in Engineering & Sciences》 2025年第4期289-334,共46页
This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mod... This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system. 展开更多
关键词 Offshore wind power generation efficiency maximum power point tracking(MPPT) integral sliding mode control grey wolf optimization algorithm offshore photovoltaic cells
在线阅读 下载PDF
混合调制LLC谐振变换器的效率优化控制策略
15
作者 常雨芳 张振 +2 位作者 蒋煊焱 黄文聪 严怀成 《电力系统保护与控制》 北大核心 2026年第1期50-59,共10页
针对LLC谐振变换器宽范围运行与高效率难以兼顾,以及采用传统控制器进行环路设计时动态性能不佳、抗扰性能较差的问题,提出了一种混合调制LLC谐振变换器的效率优化控制策略。首先,分析变换器在变频控制和移相控制下的增益与软开关特性,... 针对LLC谐振变换器宽范围运行与高效率难以兼顾,以及采用传统控制器进行环路设计时动态性能不佳、抗扰性能较差的问题,提出了一种混合调制LLC谐振变换器的效率优化控制策略。首先,分析变换器在变频控制和移相控制下的增益与软开关特性,设计了混合调制的控制方式。其次,提出了一种基于低通滤波器的改进自抗扰控制器,降低了扩张状态观测器的测量噪声,提高了系统的抗扰性能。然后,对变换器各部分的损耗进行分析,构建了效率优化模型,提出了一种基于山瞪羚算法的效率优化方法,实现了混合调制的效率最大化。通过对最优调制参数进行曲线拟合,降低了设计控制环路的复杂度。最后,搭建了实验平台进行理论验证,实验结果验证了所提效率优化方法和控制策略的有效性和可行性。 展开更多
关键词 LLC谐振变换器 混合调制 效率优化 改进自抗扰控制 山瞪羚优化算法
在线阅读 下载PDF
Correction of array failure using grey wolf optimizer hybridized with an interior point algorithm 被引量:2
16
作者 Shafqat Ullah KHAN M.K.A.RAHIM Liaqat ALI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第9期1191-1202,共12页
We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelob... We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelobe level(SLL) and null depth level(NDL), and nulls are damaged and shifted from their original locations. All these issues can be solved by designing a new fitness function to reduce the error between the preferred and expected radiation power patterns and the null limitations. The hybrid algorithm has been designed to control the array's faulty radiation power pattern. Antenna arrays composed of 21 sensors are used in an example simulation scenario. The MATLAB simulation results confirm the good performance of the proposed method, compared with the existing methods in terms of SLL and NDL. 展开更多
关键词 Failure correction grey wolf optimizer Interior point algorithm SIDELOBES Deeper null depth level
原文传递
考虑工人疲劳的混合流水车间调度研究
17
作者 李俊 杨方燕 《制造业自动化》 2026年第1期52-62,共11页
为了解决混合流水车间任务分配和工人疲劳问题,提出了考虑工人疲劳的混合整数规划模型。根据问题特征,采用实数编码的方式解决工序排序和工人指派问题,并提出了改进的星鸦优化算法(INOA)进行求解。首先,采用反向学习种群初始化,增加种... 为了解决混合流水车间任务分配和工人疲劳问题,提出了考虑工人疲劳的混合整数规划模型。根据问题特征,采用实数编码的方式解决工序排序和工人指派问题,并提出了改进的星鸦优化算法(INOA)进行求解。首先,采用反向学习种群初始化,增加种群的多样性;其次,优化参数μ,γ因子,提升算法的搜索效率和收敛速度;最后,为了提高算法的鲁棒性,引入种群多样性监测机制,采用柯西扰动,避免因种群多样性过低导致的停滞。将INOA和其他算法在12个函数上测试,测试结果表明INOA各方面性能都明显优于其他算法。通过连接线装配生产线进行实例验证,结果进一步验证了算法的优越性,所提出的优化方案能够有效的缩短完工周期,防止工人过度疲劳,促进任务合理的分配。 展开更多
关键词 混合流水车间 工人疲劳 混合整数规划 星鸦优化算法 改进算法
在线阅读 下载PDF
Enhancing rock fragmentation prediction in mining operations:A hybrid GWO-RF model with SHAP interpretability 被引量:3
18
作者 ZHANG Yu-lin QIU Yin-gui +2 位作者 ARMAGHANI Danial Jahed MONJEZI Masoud ZHOU Jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2916-2929,共14页
In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hy... In the mining industry,precise forecasting of rock fragmentation is critical for optimising blasting processes.In this study,we address the challenge of enhancing rock fragmentation assessment by developing a novel hybrid predictive model named GWO-RF.This model combines the grey wolf optimization(GWO)algorithm with the random forest(RF)technique to predict the D_(80)value,a critical parameter in evaluating rock fragmentation quality.The study is conducted using a dataset from Sarcheshmeh Copper Mine,employing six different swarm sizes for the GWO-RF hybrid model construction.The GWO-RF model’s hyperparameters are systematically optimized within established bounds,and its performance is rigorously evaluated using multiple evaluation metrics.The results show that the GWO-RF hybrid model has higher predictive skills,exceeding traditional models in terms of accuracy.Furthermore,the interpretability of the GWO-RF model is enhanced through the utilization of SHapley Additive exPlanations(SHAP)values.The insights gained from this research contribute to optimizing blasting operations and rock fragmentation outcomes in the mining industry. 展开更多
关键词 BLASTING rock fragmentation random forest grey wolf optimization hybrid tree-based technique
在线阅读 下载PDF
Short-term wind power prediction using an improved grey wolf optimization algorithm with back-propagation neural network 被引量:3
19
作者 Liming Wei Shuo Xv Bin Li 《Clean Energy》 EI 2022年第2期288-296,共9页
A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a trad... A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a traditional back-propagation(BP)neural network algorithm,the improved grey wolf optimization(IGWO)algorithm has been adopted to optimize its parameters.The performance of the proposed method has been evaluated by experiments.First,the features of the wind farm are described to show the fundamental information of the experiments.A single turbine with rated power of 1500 kW and power generation coefficient of 2.74 in the wind farm was introduced to show the technical details of the turbines.Original wind power data of the whole farm were preprocessed by using the quartile method to remove the abnormal data points.Then,the retained wind power data were predicted and analysed by using the proposed IGWO-BP algorithm.Analysis of the results proves the practicability and efficiency of the prediction model.Results show that the average accuracy of prediction is~11%greater than the traditional BP method.In this way,the proposed wind power prediction method can be adopted to improve the accuracy of prediction and to ensure the effective utilization of wind energy. 展开更多
关键词 wind power prediction back-propagation neural network improved grey wolf optimization IGWO
原文传递
A Hybrid of Grey Wolf Optimization and Genetic Algorithm for Optimization of Hybrid Wind and Solar Renewable Energy System
20
作者 Diriba Kajela Geleta Mukhdeep Singh Manshahia 《Journal of the Operations Research Society of China》 EI CSCD 2022年第4期749-762,共14页
In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf op... In this paper,a hybrid of grey wolf optimization(GWO)and genetic algorithm(GA)has been implemented to minimize the annual cost of hybrid of wind and solar renewable energy system.It was named as hybrid of grey wolf optimization and genetic algorithm(HGWOGA).HGWOGA was applied to this hybrid problem through three procedures.First,the balance between the exploration and the exploitation process was done by grey wolf optimizer algorithm.Then,we divided the population into subpopulation and used the arithmetical crossover operator to utilize the dimension reduction and the population partitioning processes.At last,mutation operator was applied in the whole population in order to refrain from the premature convergence and trapping in local minima.MATLAB code was designed to implement the proposed methodology.The result of this algorithm is compared with the results of iteration method,GWO,GA,artificial bee colony(ABC)and particle swarm optimization(PSO)techniques.The results obtained by this algorithm are better when compared with those mentioned in the text. 展开更多
关键词 hybrid renewable energy OPTIMIZATION Nature-inspired algorithm grey wolf optimization Genetic algorithm
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部