Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calc...Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control.展开更多
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region...Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.展开更多
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr...We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.展开更多
The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies m...The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable.展开更多
Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper review...Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper reviews critical parameters influencing mechanical properties in 35 RAC studies,compiles four datasets encompassing these parameters,and compiles the performance and key findings of 77 published data-driven models.Baseline capability tests are conducted on the nine most used models.The paper also outlines advanced methodological frameworks for future RAC research,examining the principles and challenges of physics-informed neural networks(PINNs)and generative adversarial networks(GANs),and employs SHAP and PDP tools to interpret model behaviour and enhance transparency.Findings indicate a clear trend toward integrated systems,hybrid models,and advanced optimization strategies,with integrated tree-based models showing superior performance across various prediction tasks.Based on this comprehensive review,we offer a recommendation for future research on how AI can be effectively oriented in RAC studies to support practical deployment and build confidence in data-driven approaches.展开更多
The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformatio...The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models.展开更多
Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to...Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to be established by integrating robust predictions and an understanding of mechanisms underlying tree growth.Hybrid ecophysiological models,such as potentially useable light sum equation(PULSE)models,are useful tools requiring minimal input data that meet the requirements of SRF.PULSE models have been tested and calibrated for different evergreen conifers and broadleaves at both juvenile and mature stages of tree growth with coarse soil and climate data.Therefore,it is prudent to question:can adding detailed soil and climatic data reduce errors in this type of model?In addition,PULSE techniques have not been used to model deciduous species,which are a challenge for ecophysiological models due to their phenology.This study developed a PULSE model for a clonal Populus tomentosa plantation in northern China using detailed edaphic and climatic data.The results showed high precision and low bias in height(m)and basal area(m^(2)·ha^(-1))predictions.While detailed edaphoclimatic data produce highly precise predictions and a good mechanistic understanding,the study suggested that local climatic data could also be employed.The study showed that PULSE modelling in combination with coarse level of edaphic and local climate data resulted in reasonably precise tree growth prediction and minimal bias.展开更多
This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor gro...This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor growth is established.Nonlinear fitting is employed to obtain the optimal parameter estimation of the mathematical model,and the numerical solution is carried out using the Matlab software.By comparing the clinical data with the simulation results,a good agreement is achieved,which verifies the rationality and feasibility of the model.展开更多
With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbin...With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbine wakes.These models leverage the ability to capture complex,high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than physics-driven models.As a result,data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake behavior and turbine power output.This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake modeling that employ data-driven approaches.It begins by defining and classifying machine learning methods to facilitate a clearer understanding of the reviewed literature.Subsequently,the related studies are categorized into four key areas:wind turbine power prediction,data-driven analytic wake models,wake field reconstruction,and the incorporation of explicit physical constraints.The accuracy of data-driven models is influenced by two primary factors:the quality of the training data and the performance of the model itself.Accordingly,both data accuracy and model structure are discussed in detail within the review.展开更多
In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using singl...In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using single representations,such as meshes,CAD,and point clouds.However,existing methods cannot effectively combine different three-dimensional model types for the direct conversion,alignment,and integrity maintenance of geometric and topological information.Hence,we propose an integration approach that combines the geometric accuracy of CAD data with the flexibility of mesh representations,as well as introduce a unique hybrid representation that combines CAD and mesh models to enhance segmentation accuracy.To combine these two model types,our hybrid system utilizes advanced-neural-network techniques to convert CAD models into mesh models.For complex CAD models,model segmentation is crucial for model retrieval and reuse.In partial retrieval,it aims to segment a complex CAD model into several simple components.The first component of our hybrid system involves advanced mesh-labeling algorithms that harness the digitization of CAD properties to mesh models.The second component integrates labelled face features for CAD segmentation by leveraging the abundant multisemantic information embedded in CAD models.This combination of mesh and CAD not only refines the accuracy of boundary delineation but also provides a comprehensive understanding of the underlying object semantics.This study uses the Fusion 360 Gallery dataset.Experimental results indicate that our hybrid method can segment these models with higher accuracy than other methods that use single representations.展开更多
In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reve...In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reveals a pronounced focus on refining diagnostic accuracy,personalising treatment plans,and optimising resource allocation to enhance clinical outcomes.Nonetheless,this domain faces unique challenges,such as irregular data collection,inconsistent data quality,and patient-specific structural variations.This paper proposed a novel hybrid approach that integrates heuristic and stochastic methods for anomaly detection in patient clinical data to address these challenges.The strategy combines HPO-based optimal Density-Based Spatial Clustering of Applications with Noise for clustering patient exercise data,facilitating efficient anomaly identification.Subsequently,a stochastic method based on the Interquartile Range filters unreliable data points,ensuring that medical tools and professionals receive only the most pertinent and accurate information.The primary objective of this study is to equip healthcare pro-fessionals and researchers with a robust tool for managing extensive,high-dimensional clinical datasets,enabling effective isolation and removal of aberrant data points.Furthermore,a sophisticated regression model has been developed using Automated Machine Learning(AutoML)to assess the impact of the ensemble abnormal pattern detection approach.Various statistical error estimation techniques validate the efficacy of the hybrid approach alongside AutoML.Experimental results show that implementing this innovative hybrid model on patient rehabilitation data leads to a notable enhance-ment in AutoML performance,with an average improvement of 0.041 in the R2 score,surpassing the effectiveness of traditional regression models.展开更多
Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit signifi...Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.展开更多
Alcohol oxidation is a widely used green chemical reaction.The reaction process produces flammable and explosive hydrogen,so the design of the reactor must meet stringent safety requirements.Based on the limited exper...Alcohol oxidation is a widely used green chemical reaction.The reaction process produces flammable and explosive hydrogen,so the design of the reactor must meet stringent safety requirements.Based on the limited experimental data,utilizing the traditional numerical method of computational fluid dynamics(CFD)to simulate the gas-liquid two-phase flow reactor can mitigate the risk of danger under varying working conditions.However,the calculation process is highly time-consuming.Therefore,by integrating process simulation,computational fluid dynamics,and deep learning technologies,an intelligent hybrid chemical model based on machine learning was proposed to expedite CFD calculations,enhance the prediction of flow fields,conversion rates,and concentrations inside the reactor,and offer insights for designing and optimizing the reactor for the alcohol oxidation system.The results show that the hybrid model based on the long and short-term memory neural network achieves 99.8%accuracy in conversion rate prediction and 99.9%accuracy in product concentration prediction.Through validation,the hybrid model is accelerated by about 360 times compared with instrumental analysis in conversion rate prediction and about 45 times compared with CFD calculation in concentration distribution prediction.This hybrid model can quickly predict the conversion rate and product concentration distribution in the gas-liquid two-phase flow reactor and provide a model reference for fast prediction and accurate control in the actual chemical production process.展开更多
Accurate prediction of wind energy plays a vital role in maintaining grid stability and supporting the broader shift toward renewable energy systems.Nevertheless,the inherently variable nature of wind and the intricac...Accurate prediction of wind energy plays a vital role in maintaining grid stability and supporting the broader shift toward renewable energy systems.Nevertheless,the inherently variable nature of wind and the intricacy of high-dimensional datasets pose major obstacles to reliable forecasting.To address these difficulties,this study presents an innovative hybrid method for short-term wind power prediction by combining a Long Short-Term Memory(LSTM)network with a Single Candidate Optimizer(SCO)algorithm.In contrast to conventional techniques that rely on random parameter initialization,the proposed LSTM-SCO framework leverages the distinctive capability of SCO to work with a single candidate solution,thereby substantially reducing the computational overhead compared to traditional population-based metaheuristics.The performance of the model was benchmarked against various classical and deep learning models across datasets from three geographically diverse sites,using multiple evaluation metrics.Experimental findings demonstrate that the SCO-optimized model enhances prediction accuracy by up to 12.5%over standard LSTM implementations.展开更多
The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficie...The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation.展开更多
Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping...Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium).展开更多
Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands...Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.展开更多
A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of ...A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of shielding gases with varying He-Ar ratios,and the coupling between arc plasma and laser-induced metal plume.The accuracy of the model is validated using a high-speed camera.The effects of varying He contents in the shielding gas on both the temperature and flow velocity of hybrid plasma,as well as the distribu-tion of laser-induced metal vapor mass,were investigated separately.The maximum temperature and size of arc plasma decrease as the He volume ratio increases,the arc distribution becomes more concentrated,and its flow velocity initially decreases and then sharply increases.At high helium content,both the flow velocity of hybrid plasma and metal vapor are high,the metal vapor is con-centrated on the right side of keyhole,and its flow appears chaotic.The flow state of arc plasma is most stable when the shielding gas consists of 50%He+50%Ar.展开更多
This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The m...This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The motion of the fluid is taken as two-dimensional with the impact of a magnetic field in the normal direction. The variable, permeable, and stretching nature of sheet's surface sets the fluid into motion. Thermal and mass diffusions are controlled through the use of the Cattaneo–Christov flux model. A dataset is generated using MATLAB bvp4c package solver and employed to train an artificial neural network(ANN) based on the Levenberg–Marquardt back-propagation(LMBP) algorithm. It has been observed as an outcome of this study that the modeled problem achieves peak performance at epochs 637, 112, 4848, and 344 using ANN-LMBP. The linear velocity of the fluid weakens with progression in variable porous and magnetic factors.With an augmentation in magnetic factor, the micro-rotational velocity profiles are augmented on the domain 0 ≤ η < 1.5 due to the support of micro-rotations by Lorentz forces close to the sheet's surface, while they are suppressed on the domain 1.5 ≤ η < 6.0 due to opposing micro-rotations away from the sheet's surface. Thermal distributions are augmented with an upsurge in thermophoresis, Brownian motion, magnetic, and radiation factors, while they are suppressed with an upsurge in thermal relaxation parameter. Concentration profiles increase with an expansion in thermophoresis factor and are suppressed with an intensification of Brownian motion factor and solute relaxation factor. The absolute errors(AEs) are evaluated for all the four scenarios that fall within the range 10^(-3)–10^(-8) and are associated with the corresponding ANN configuration that demonstrates a fine degree of accuracy.展开更多
基金supported by the National Natural Science Foundation of China(No.62273234)Key Research and Development Program of Shaanxi(Program No.2022GY-306)Technology Innovation Leading Program of Shaanxi(Program No.2022QFY01-16).
文摘Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control.
基金funding support from the National Natural Science Foundation of China(Grant Nos.U22A20594,52079045)Hong-Zhi Cui acknowledges the financial support of the China Scholarship Council(Grant No.CSC:202206710014)for his research at Universitat Politecnica de Catalunya,Barcelona.
文摘Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.
基金supported by National Key Research and Development Program (2019YFA0708301)National Natural Science Foundation of China (51974337)+2 种基金the Strategic Cooperation Projects of CNPC and CUPB (ZLZX2020-03)Science and Technology Innovation Fund of CNPC (2021DQ02-0403)Open Fund of Petroleum Exploration and Development Research Institute of CNPC (2022-KFKT-09)
文摘We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets.
基金supported by National Natural Science Foundation of China(Grant No.52375380)National Key R&D Program of China(Grant No.2022YFB3402200)the Key Project of National Natural Science Foundation of China(Grant No.12032018).
文摘The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable.
文摘Data-driven research on recycled aggregate concrete(RAC)has long faced the challenge of lacking a unified testing standard dataset,hindering accurate model evaluation and trust in predictive outcomes.This paper reviews critical parameters influencing mechanical properties in 35 RAC studies,compiles four datasets encompassing these parameters,and compiles the performance and key findings of 77 published data-driven models.Baseline capability tests are conducted on the nine most used models.The paper also outlines advanced methodological frameworks for future RAC research,examining the principles and challenges of physics-informed neural networks(PINNs)and generative adversarial networks(GANs),and employs SHAP and PDP tools to interpret model behaviour and enhance transparency.Findings indicate a clear trend toward integrated systems,hybrid models,and advanced optimization strategies,with integrated tree-based models showing superior performance across various prediction tasks.Based on this comprehensive review,we offer a recommendation for future research on how AI can be effectively oriented in RAC studies to support practical deployment and build confidence in data-driven approaches.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.12322203).
文摘The constitutive models of shape memory alloys(SMAs)play an important role in facilitating the widespread application of such types of alloys in various engineering fields.However,to accurately describe the deformation behaviors of SMAs,the concepts in classical plasticity are employed in the existing constitutive models,and a series of complex mathematical equations are involved.Such complexity brings inconvenience for the construction,implementation,and application of the constitutive models.To overcome these shortcomings,a data-driven constitutive model of SMAs is developed in this work based on the artificial neural network(ANN).In the proposed model,the components of the strain tensor in principal space,ambient temperature,and the maximum equivalent strain in the deformation history from the initial state to the current loading state are chosen as the input features,and the components of the stress tensor in principal space are set as the output.The proposed ANN-based constitutive model is implemented into the finite element program ABAQUS by deriving its consistent tangent modulus and writing a user-defined material subroutine.The stress-strain responses of SMA material under various loading paths and at different ambient temperatures are used to train the ANN model,which is generated from the existing constitutive model(numerical experiments).To validate the capability of the proposed model,the predicted stress-strain responses of SMA material,and the global and local responses of two typical SMA structures are compared with the corresponding numerical experiments.This work demonstrates a good potential to obtain the constitutive model of SMAs by pure data and avoid the need for vast stores of knowledge for the construction of constitutive models.
基金The National Key Research and Development Program of China(Grant No.2021YFD2201203)the 5·5 Engineering Research&Innovation Team Project of Beijing Forestry University(No.BLRC2023C05)the Key Research and Development Program of Shandong Province(No.2021SFGC02050102)。
文摘Short rotation plantation forestry(SRF)is being widely adopted to increase wood production,in order to meet global demand for wood products.However,to ensure maximum gains from SRF,optimised management regimes need to be established by integrating robust predictions and an understanding of mechanisms underlying tree growth.Hybrid ecophysiological models,such as potentially useable light sum equation(PULSE)models,are useful tools requiring minimal input data that meet the requirements of SRF.PULSE models have been tested and calibrated for different evergreen conifers and broadleaves at both juvenile and mature stages of tree growth with coarse soil and climate data.Therefore,it is prudent to question:can adding detailed soil and climatic data reduce errors in this type of model?In addition,PULSE techniques have not been used to model deciduous species,which are a challenge for ecophysiological models due to their phenology.This study developed a PULSE model for a clonal Populus tomentosa plantation in northern China using detailed edaphic and climatic data.The results showed high precision and low bias in height(m)and basal area(m^(2)·ha^(-1))predictions.While detailed edaphoclimatic data produce highly precise predictions and a good mechanistic understanding,the study suggested that local climatic data could also be employed.The study showed that PULSE modelling in combination with coarse level of edaphic and local climate data resulted in reasonably precise tree growth prediction and minimal bias.
基金National Natural Science Foundation of China(Project No.:12371428)Projects of the Provincial College Students’Innovation and Training Program in 2024(Project No.:S202413023106,S202413023110)。
文摘This paper focuses on the numerical solution of a tumor growth model under a data-driven approach.Based on the inherent laws of the data and reasonable assumptions,an ordinary differential equation model for tumor growth is established.Nonlinear fitting is employed to obtain the optimal parameter estimation of the mathematical model,and the numerical solution is carried out using the Matlab software.By comparing the clinical data with the simulation results,a good agreement is achieved,which verifies the rationality and feasibility of the model.
基金Supported by the National Natural Science Foundation of China under Grant No.52131102.
文摘With the rapid advancement of machine learning technology and its growing adoption in research and engineering applications,an increasing number of studies have embraced data-driven approaches for modeling wind turbine wakes.These models leverage the ability to capture complex,high-dimensional characteristics of wind turbine wakes while offering significantly greater efficiency in the prediction process than physics-driven models.As a result,data-driven wind turbine wake models are regarded as powerful and effective tools for predicting wake behavior and turbine power output.This paper aims to provide a concise yet comprehensive review of existing studies on wind turbine wake modeling that employ data-driven approaches.It begins by defining and classifying machine learning methods to facilitate a clearer understanding of the reviewed literature.Subsequently,the related studies are categorized into four key areas:wind turbine power prediction,data-driven analytic wake models,wake field reconstruction,and the incorporation of explicit physical constraints.The accuracy of data-driven models is influenced by two primary factors:the quality of the training data and the performance of the model itself.Accordingly,both data accuracy and model structure are discussed in detail within the review.
基金Supported by the National Key Research and Development Program of China(2024YFB3311703)National Natural Science Foundation of China(61932003)Beijing Science and Technology Plan Project(Z221100006322003).
文摘In this paper,we introduce an innovative method for computer-aided design(CAD)segmentation by concatenating meshes and CAD models.Many previous CAD segmentation methods have achieved impressive performance using single representations,such as meshes,CAD,and point clouds.However,existing methods cannot effectively combine different three-dimensional model types for the direct conversion,alignment,and integrity maintenance of geometric and topological information.Hence,we propose an integration approach that combines the geometric accuracy of CAD data with the flexibility of mesh representations,as well as introduce a unique hybrid representation that combines CAD and mesh models to enhance segmentation accuracy.To combine these two model types,our hybrid system utilizes advanced-neural-network techniques to convert CAD models into mesh models.For complex CAD models,model segmentation is crucial for model retrieval and reuse.In partial retrieval,it aims to segment a complex CAD model into several simple components.The first component of our hybrid system involves advanced mesh-labeling algorithms that harness the digitization of CAD properties to mesh models.The second component integrates labelled face features for CAD segmentation by leveraging the abundant multisemantic information embedded in CAD models.This combination of mesh and CAD not only refines the accuracy of boundary delineation but also provides a comprehensive understanding of the underlying object semantics.This study uses the Fusion 360 Gallery dataset.Experimental results indicate that our hybrid method can segment these models with higher accuracy than other methods that use single representations.
文摘In recent years,there has been a concerted effort to improve anomaly detection tech-niques,particularly in the context of high-dimensional,distributed clinical data.Analysing patient data within clinical settings reveals a pronounced focus on refining diagnostic accuracy,personalising treatment plans,and optimising resource allocation to enhance clinical outcomes.Nonetheless,this domain faces unique challenges,such as irregular data collection,inconsistent data quality,and patient-specific structural variations.This paper proposed a novel hybrid approach that integrates heuristic and stochastic methods for anomaly detection in patient clinical data to address these challenges.The strategy combines HPO-based optimal Density-Based Spatial Clustering of Applications with Noise for clustering patient exercise data,facilitating efficient anomaly identification.Subsequently,a stochastic method based on the Interquartile Range filters unreliable data points,ensuring that medical tools and professionals receive only the most pertinent and accurate information.The primary objective of this study is to equip healthcare pro-fessionals and researchers with a robust tool for managing extensive,high-dimensional clinical datasets,enabling effective isolation and removal of aberrant data points.Furthermore,a sophisticated regression model has been developed using Automated Machine Learning(AutoML)to assess the impact of the ensemble abnormal pattern detection approach.Various statistical error estimation techniques validate the efficacy of the hybrid approach alongside AutoML.Experimental results show that implementing this innovative hybrid model on patient rehabilitation data leads to a notable enhance-ment in AutoML performance,with an average improvement of 0.041 in the R2 score,surpassing the effectiveness of traditional regression models.
基金Supported by the Laoshan Laboratory(No.LSKJ 202202404)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 42000000)+1 种基金the National Natural Science Foundation of China(NSFC)(No.42030410)the Startup Foundation for Introducing Talent of NUIST,and the Jiangsu Innovation Research Group(No.JSSCTD 202346)。
文摘Numerical models are crucial for quantifying the ocean-atmosphere interactions associated with the El Niño-Southern Oscillation(ENSO)phenomenon in the tropical Pacific.Current coupled models often exhibit significant biases and inter-model differences in simulating ENSO,underscoring the need for alternative modeling approaches.The Regional Ocean Modeling System(ROMS)is a sophisticated ocean model widely used for regional studies and has been coupled with various atmospheric models.However,its application in simulating ENSO processes on a basin scale in the tropical Pacific has not been explored.For the first time,this study presents the development of a basin-scale hybrid coupled model(HCM)for the tropical Pacific,integrating ROMS with a statistical atmospheric model that captures the interannual relationships between sea surface temperature(SST)and wind stress anomalies.The HCM is evaluated for its capability to simulate the annual mean,seasonal,and interannual variations of the oceanic state in the tropical Pacific.Results demonstrate that the model effectively reproduces the ENSO cycle,with a dominant oscillation period of approximately two years.The ROMS-based HCM developed here offers an efficient and robust tool for investigating climate variability in the tropical Pacific.
基金the support from the National Natural Science Foundation of China(22478429)the Special Project Fund of Taishan-Scholars(tsqn202408101)+3 种基金the Natural Science Foundation of Shandong Province(ZR2023YQ009)CNPC Innovation Found(2024DQ02-0504)Fundamental Research Funds for the Central Universities,Ocean University of China(202364004)the State Key Laboratory of Heavy Oil Processing(SKLHOP202403003)。
文摘Alcohol oxidation is a widely used green chemical reaction.The reaction process produces flammable and explosive hydrogen,so the design of the reactor must meet stringent safety requirements.Based on the limited experimental data,utilizing the traditional numerical method of computational fluid dynamics(CFD)to simulate the gas-liquid two-phase flow reactor can mitigate the risk of danger under varying working conditions.However,the calculation process is highly time-consuming.Therefore,by integrating process simulation,computational fluid dynamics,and deep learning technologies,an intelligent hybrid chemical model based on machine learning was proposed to expedite CFD calculations,enhance the prediction of flow fields,conversion rates,and concentrations inside the reactor,and offer insights for designing and optimizing the reactor for the alcohol oxidation system.The results show that the hybrid model based on the long and short-term memory neural network achieves 99.8%accuracy in conversion rate prediction and 99.9%accuracy in product concentration prediction.Through validation,the hybrid model is accelerated by about 360 times compared with instrumental analysis in conversion rate prediction and about 45 times compared with CFD calculation in concentration distribution prediction.This hybrid model can quickly predict the conversion rate and product concentration distribution in the gas-liquid two-phase flow reactor and provide a model reference for fast prediction and accurate control in the actual chemical production process.
文摘Accurate prediction of wind energy plays a vital role in maintaining grid stability and supporting the broader shift toward renewable energy systems.Nevertheless,the inherently variable nature of wind and the intricacy of high-dimensional datasets pose major obstacles to reliable forecasting.To address these difficulties,this study presents an innovative hybrid method for short-term wind power prediction by combining a Long Short-Term Memory(LSTM)network with a Single Candidate Optimizer(SCO)algorithm.In contrast to conventional techniques that rely on random parameter initialization,the proposed LSTM-SCO framework leverages the distinctive capability of SCO to work with a single candidate solution,thereby substantially reducing the computational overhead compared to traditional population-based metaheuristics.The performance of the model was benchmarked against various classical and deep learning models across datasets from three geographically diverse sites,using multiple evaluation metrics.Experimental findings demonstrate that the SCO-optimized model enhances prediction accuracy by up to 12.5%over standard LSTM implementations.
基金supported by the National Key Research and Development Program of China(2023YFB3307801)the National Natural Science Foundation of China(62394343,62373155,62073142)+3 种基金Major Science and Technology Project of Xinjiang(No.2022A01006-4)the Programme of Introducing Talents of Discipline to Universities(the 111 Project)under Grant B17017the Fundamental Research Funds for the Central Universities,Science Foundation of China University of Petroleum,Beijing(No.2462024YJRC011)the Open Research Project of the State Key Laboratory of Industrial Control Technology,China(Grant No.ICT2024B70).
文摘The distillation process is an important chemical process,and the application of data-driven modelling approach has the potential to reduce model complexity compared to mechanistic modelling,thus improving the efficiency of process optimization or monitoring studies.However,the distillation process is highly nonlinear and has multiple uncertainty perturbation intervals,which brings challenges to accurate data-driven modelling of distillation processes.This paper proposes a systematic data-driven modelling framework to solve these problems.Firstly,data segment variance was introduced into the K-means algorithm to form K-means data interval(KMDI)clustering in order to cluster the data into perturbed and steady state intervals for steady-state data extraction.Secondly,maximal information coefficient(MIC)was employed to calculate the nonlinear correlation between variables for removing redundant features.Finally,extreme gradient boosting(XGBoost)was integrated as the basic learner into adaptive boosting(AdaBoost)with the error threshold(ET)set to improve weights update strategy to construct the new integrated learning algorithm,XGBoost-AdaBoost-ET.The superiority of the proposed framework is verified by applying this data-driven modelling framework to a real industrial process of propylene distillation.
基金the project SILVARSTAR funded from the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement 101015442。
文摘Within the SILVARSTAR project,a user-friendly frequency-based hybrid prediction tool has been developed to assess the environmental impact of railway-induced vibration.This tool is integrated in existing noise mapping software.Following modern vibration standards and guidelines,the vibration velocity level in a building in each frequency band is expressed as the sum of a force density(source term),line source transfer mobility(propagation term)and building correction factor(receiver term).A hybrid approach is used that allows for a combination of experimental data and numerical predictions,providing increased flexibility and applicability.The train and track properties can be selected from a database or entered as numerical values.The user can select soil impedance and transfer functions from a database,pre-computed for a wide range of parameters with state-of-the-art models.An experimental database of force densities,transfer functions,free field vibration and input parameters is also provided.The building response is estimated by means of building correction factors.Assumptions within the modelling approach are made to reduce computation time but these can influence prediction accuracy;this is quantified for the case of a nominal intercity train running at different speeds on a ballasted track supported by homogeneous soil of varying stiffness.The paper focuses on the influence of these parameters on the compliance of the track–soil system and the free field response.We also demonstrate the use and discuss the validation of the vibration prediction tool for the case of a high-speed train running on a ballasted track in Lincent(Belgium).
文摘Permanent magnet synchronous motor(PMSM)is widely used in alternating current servo systems as it provides high eficiency,high power density,and a wide speed regulation range.The servo system is placing higher demands on its control performance.The model predictive control(MPC)algorithm is emerging as a potential high-performance motor control algorithm due to its capability of handling multiple-input and multipleoutput variables and imposed constraints.For the MPC used in the PMSM control process,there is a nonlinear disturbance caused by the change of electromagnetic parameters or load disturbance that may lead to a mismatch between the nominal model and the controlled object,which causes the prediction error and thus affects the dynamic stability of the control system.This paper proposes a data-driven MPC strategy in which the historical data in an appropriate range are utilized to eliminate the impact of parameter mismatch and further improve the control performance.The stability of the proposed algorithm is proved as the simulation demonstrates the feasibility.Compared with the classical MPC strategy,the superiority of the algorithm has also been verified.
基金supported by the National Natural Science Foundation of China(Grant No.52375340,51975263,52405366).
文摘A three-dimensional numerical model of laser-arc hybrid plasma for aluminum alloy fillet joints is developed in this study.This mod-el accounts for the geometric complexity of fillet joints,the physical properties of shielding gases with varying He-Ar ratios,and the coupling between arc plasma and laser-induced metal plume.The accuracy of the model is validated using a high-speed camera.The effects of varying He contents in the shielding gas on both the temperature and flow velocity of hybrid plasma,as well as the distribu-tion of laser-induced metal vapor mass,were investigated separately.The maximum temperature and size of arc plasma decrease as the He volume ratio increases,the arc distribution becomes more concentrated,and its flow velocity initially decreases and then sharply increases.At high helium content,both the flow velocity of hybrid plasma and metal vapor are high,the metal vapor is con-centrated on the right side of keyhole,and its flow appears chaotic.The flow state of arc plasma is most stable when the shielding gas consists of 50%He+50%Ar.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Group Project (Grant No. RGP2/198/45)Project supported by Prince Sattam bin Abdulaziz University (Grant No. PSAU/2025/R/1446)。
文摘This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The motion of the fluid is taken as two-dimensional with the impact of a magnetic field in the normal direction. The variable, permeable, and stretching nature of sheet's surface sets the fluid into motion. Thermal and mass diffusions are controlled through the use of the Cattaneo–Christov flux model. A dataset is generated using MATLAB bvp4c package solver and employed to train an artificial neural network(ANN) based on the Levenberg–Marquardt back-propagation(LMBP) algorithm. It has been observed as an outcome of this study that the modeled problem achieves peak performance at epochs 637, 112, 4848, and 344 using ANN-LMBP. The linear velocity of the fluid weakens with progression in variable porous and magnetic factors.With an augmentation in magnetic factor, the micro-rotational velocity profiles are augmented on the domain 0 ≤ η < 1.5 due to the support of micro-rotations by Lorentz forces close to the sheet's surface, while they are suppressed on the domain 1.5 ≤ η < 6.0 due to opposing micro-rotations away from the sheet's surface. Thermal distributions are augmented with an upsurge in thermophoresis, Brownian motion, magnetic, and radiation factors, while they are suppressed with an upsurge in thermal relaxation parameter. Concentration profiles increase with an expansion in thermophoresis factor and are suppressed with an intensification of Brownian motion factor and solute relaxation factor. The absolute errors(AEs) are evaluated for all the four scenarios that fall within the range 10^(-3)–10^(-8) and are associated with the corresponding ANN configuration that demonstrates a fine degree of accuracy.