期刊文献+
共找到1,079篇文章
< 1 2 54 >
每页显示 20 50 100
ASSIMILATION OF REAL OBSERVATIONAL DATA WITH THE GSI-HYBRID DATA ASSIMILATION SYSTEM TO IMPROVE TYPHOON FORECAST 被引量:6
1
作者 李泓 骆婧瑶 陈葆德 《Journal of Tropical Meteorology》 SCIE 2015年第4期400-407,共8页
A hybrid GSI (Grid-point Statistical Interpolation)-ETKF (Ensemble Transform Kalman Filter) data assimila- tion system has been recently developed for the WRF (Weather Research and Forecasting) model and tested ... A hybrid GSI (Grid-point Statistical Interpolation)-ETKF (Ensemble Transform Kalman Filter) data assimila- tion system has been recently developed for the WRF (Weather Research and Forecasting) model and tested with simu- lated observations for tropical cyclone (TC) forecast. This system is based on the existing GSI but with ensemble back- ground information incorporated. As a follow-up, this work extends the new system to assimilate real observations to further understand the hybrid scheme. As a first effort to explore the system with real observations, relatively coarse grid resolution (27 km) is used. A case study of typhoon Muifa (2011) is performed to assimilate real observations in- cluding conventional in-situ and satellite data. The hybrid system with flow-dependent ensemble eovariance shows sig- nificant improvements with respect to track forecast compared to the standard GSI system which in theory is three di- mensional variational analysis (3DVAR). By comparing the analyses, analysis increments and forecasts, the hybrid sys- tem is found to be potentially able to recognize the existence of TC vortex, adjust its position systematically, better de- scribe the asymmetric structure of typhoon Muifa and maintain the dynamic and thermodynamic balance in typhoon ini- tial field. In addition, a cold-start hybrid approach by using the global ensembles to provide flow-dependent error is test- ed and similar results are revealed with those from cycled GSI-ETKF approach. 展开更多
关键词 hybrid data assimilation GSI ETKF tropical cyclone
在线阅读 下载PDF
Mining Hierarchical Decision Rules from Hybrid Data with Categorical and Continuous Valued Attributes
2
作者 MIAO Duo-qian QIAN Jin +1 位作者 LI Wen ZHANG Ze-hua 《浙江海洋学院学报(自然科学版)》 CAS 2010年第5期420-427,共8页
Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful fo... Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful for users.Thus,a new approach to hierarchical decision rules mining is provided in this paper,in which similarity direction measure is introduced to deal with hybrid data.This approach can mine hierarchical decision rules by adjusting similarity measure parameters and the level of concept hierarchy trees. 展开更多
关键词 Similarity relation Attribute reduction Hierarchical decision rules hybrid data
在线阅读 下载PDF
An improved deep learning model for soybean future price prediction with hybrid data preprocessing strategy
3
作者 Dingya CHEN Hui LIU +1 位作者 Yanfei LI Zhu DUAN 《Frontiers of Agricultural Science and Engineering》 2025年第2期208-230,共23页
The futures trading market is an important part of the financial markets and soybeans are one of the most strategically important crops in the world.How to predict soybean future price is a challenging topic being stu... The futures trading market is an important part of the financial markets and soybeans are one of the most strategically important crops in the world.How to predict soybean future price is a challenging topic being studied by many researchers.This paper proposes a novel hybrid soybean future price prediction model which includes two stages of data preprocessing and deep learning prediction.In the data preprocessing stage,futures price series are decomposed into subsequences using the ICEEMDAN(improved complete ensemble empirical mode decomposition with adaptive noise)method.The Lempel-Ziv complexity determination method was then used to identify and reconstruct high-frequency subsequences.Finally,the high frequency component is decomposed secondarily using variational mode decomposition optimized by beluga whale optimization algorithm.In the deep learning prediction stage,a deep extreme learning machine optimized by the sparrow search algorithm was used to obtain the prediction results of all subseries and reconstructs them to obtain the final soybean future price prediction results.Based on the experimental results of soybean future price markets in China,Italy,and the United States,it was found that the hybrid method proposed provides superior performance in terms of prediction accuracy and robustness. 展开更多
关键词 Deep extreme learning machine hybrid data preprocessing optimization algorithm soybean future price prediction
原文传递
Development and Testing of the GRAPES Regional Ensemble-3DVAR Hybrid Data Assimilation System 被引量:10
4
作者 陈良吕 陈静 +1 位作者 薛纪善 夏宇 《Journal of Meteorological Research》 SCIE CSCD 2015年第6期981-996,共16页
Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at ... Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration,an ensemble-based 3DVAR(En-3DVAR) hybrid data assimilation system for GRAPES-Meso(the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance.Considering the problems of the ensemble-based data assimilation part of the system,including the reduction in the degree of geostrophic balance between variables,and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation,corresponding measures were taken to optimize and ameliorate the system.Accordingly,a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable.A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale.Then,a number of hybrid data assimilation experiments were carried out.The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8.Compared with the 3DVAR data assimilation,the geopotential height forecast of the hybrid data assimilation experiments improved very little,but the wind forecast improved slightly at each forecast time,especially over 300 hPa.Overall,the hybrid data assimilation demonstrates some advantages over the3 DVAR data assimilation. 展开更多
关键词 GRAPES GRAPES_MESO hybrid data assimilation regional ensemble prediction extended control variable
原文传递
The 8×10 GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection 被引量:3
5
作者 Chao-Yi Li Jun-Ming An +8 位作者 Jiu-Qi Wang Liang-Liang Wang Jia-Shun Zhang Jian-Guang Li Yuan-Da Wu Yue Wang Xiao-Jie Yin Yong Li Fei Zhong 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期39-43,共5页
An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid in... An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection. 展开更多
关键词 AWG GHz Receiver Optical Subassembly Based on Silica hybrid Integration Technology for data Center Interconnection The 8 PD
原文传递
Inference and optimal design on step-stress partially accelerated life test for hybrid system with masked data 被引量:1
6
作者 SHI Xiaolin LU Pu SHI Yimin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期1089-1100,共12页
Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed tha... Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures. 展开更多
关键词 hybrid system step-stress partially accelerated life test Type-Ⅱ progressively hybrid censored and masked data statistical inference optimal test plan
在线阅读 下载PDF
Design and Analysis of Sustainable Green Data Center with Hybrid Energy Sources 被引量:1
7
作者 Akibur Rahaman Kazi Nusrat Noor +2 位作者 Tanjin Adnan Abir Sohel Rana Masum Ali 《Journal of Power and Energy Engineering》 2021年第7期76-88,共13页
<span style="font-family:Verdana;">Develop</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;&qu... <span style="font-family:Verdana;">Develop</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ment</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> of renewable energy (RE) and mitigation of carbon dioxide, as the two largest climate action initiatives are the most challenging factors for new generation green data center (GDC). Reduction of conventional electricity consumption as well as cost of electricity (COE) with preferred quality</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of service (QoS) has been recognized as the interesting research topic in Information and Communication Technology (ICT) sector. Moreover, it becomes challenging to design a large-scale sustainable GDC with standalone RE supply. This paper gives spotlight on hybrid energy supply solution for the GDC to reduce grid electricity usage and minimum net system cost. The proposed framework includes RE source such as solar photovoltaic, wind turbine and non-renewable energy sources as Disel Generator (DG) and Battery. A hybrid optimization model is designed using HOMER software for cost assessment and energy evaluation to validate the effectiveness of the suggested scheme focusing on eco-friendly implication.</span></span></span> 展开更多
关键词 Green data Center Renewable Energy SUSTAINABILITY hybrid Power Supply Power Usage Effectiveness
在线阅读 下载PDF
基于Hybrid EnSRF-En3DVar的雷达资料同化研究 被引量:11
8
作者 闵锦忠 刘盛玉 +1 位作者 毕坤 杜宁珠 《大气科学学报》 CSCD 北大核心 2015年第2期213-221,共9页
基于WRF模式构建了Hybrid En SRF-En3DVar同化系统,该系统使用En SRF方案直接更新集合扰动。利用构建的同化系统针对台风"桑美"分别进行集合协方差权重敏感性试验和同化雷达不同观测资料的敏感性试验。集合协方差权重敏感性... 基于WRF模式构建了Hybrid En SRF-En3DVar同化系统,该系统使用En SRF方案直接更新集合扰动。利用构建的同化系统针对台风"桑美"分别进行集合协方差权重敏感性试验和同化雷达不同观测资料的敏感性试验。集合协方差权重敏感性试验发现:当集合协方差权重分别为0.25、0.5和0.75时,同化效果优于3DVar试验,其中0.75的集合协方差权重试验得到了分析场的最优估计;当集合协方差权重为1.0时,分析场最差。同化雷达不同观测资料的敏感性试验表明,联合同化雷达径向风及反射率能有效改善大气湿度场和风场,但对风场的改善效果不如仅同化雷达径向风好。将En SRF集合扰动更新方案与扰动观测方案综合分析发现,扰动观测方案集合离散度较小,计算代价大,En SRF方案优于扰动观测方案。 展开更多
关键词 资料同化 hybrid EnSRF-En3DVar 多普勒雷达 台风
在线阅读 下载PDF
考虑数据中心负载灵活迁移特性的主动配电网阻塞管理
9
作者 薛霖 周越 +3 位作者 王建学 古宸嘉 侯果 田子豪 《西安交通大学学报》 北大核心 2026年第2期195-206,共12页
针对新能源大量接入和数据中心负载分布不均导致的配电网阻塞问题,提出了基于模型-数据混合驱动的两阶段分层阻塞管理方法。在第1阶段,考虑主动配电网中有载调压变压器和并联电容器组的调节能力,建立了基于直接资源控制的主动配电网长... 针对新能源大量接入和数据中心负载分布不均导致的配电网阻塞问题,提出了基于模型-数据混合驱动的两阶段分层阻塞管理方法。在第1阶段,考虑主动配电网中有载调压变压器和并联电容器组的调节能力,建立了基于直接资源控制的主动配电网长时间尺度阻塞管理方法,并采用数据驱动的深度强化学习算法优化其投切档位。在第2阶段,建立了基于数据中心集群负载灵活迁移特性的主动配电网短时间尺度阻塞管理方法,将数据中心动态频率调节技术和动态服务器配置技术与工作负载灵活迁移特性相结合,并采用模型驱动的二阶锥规划算法,对新能源逆变器和工作负载迁移进行优化。改进的IEEE 33节点系统测试结果表明:所提两阶段阻塞管理方法可有效解决系统线路阻塞问题,测试日最大支路负载率由139.59%降至83.92%;与传统优化方法相比,所提方法将求解用时缩短至18.73 s,成本仅增加0.8%,具有更好的求解效率和鲁棒性,实现了数据中心集群与主动配电网的友好协同互动。 展开更多
关键词 主动配电网 数据中心 阻塞管理 模型-数据混合驱动
在线阅读 下载PDF
Hybrid ETKF-3DVAR方法同化多普勒雷达速度观测资料Ⅰ:模拟资料试验 被引量:11
10
作者 沈菲菲 闵锦忠 +1 位作者 许冬梅 张冰 《大气科学学报》 CSCD 北大核心 2016年第1期81-89,共9页
利用WRF(Weather research and forecasting)模式及模式模拟的资料,采用Hybrid ETKF-3DVAR(ensemble transform Kalman filter-three-dimensional variational data assimilation)方法同化模拟雷达观测资料。该混合同化方法将集合转换... 利用WRF(Weather research and forecasting)模式及模式模拟的资料,采用Hybrid ETKF-3DVAR(ensemble transform Kalman filter-three-dimensional variational data assimilation)方法同化模拟雷达观测资料。该混合同化方法将集合转换卡尔曼滤波(ensemble transform Kalman filter)得到的集合样本扰动通过转换矩阵直接作用到背景场上,利用顺序滤波的思想得到分析扰动场;然后通过增加额外控制变量的方式把"流依赖"的集合协方差信息引入到变分目标函数中去,在3DVAR框架基础下与观测数据进行融合,从而给出分析场的最优估计。试验结果表明,Hybrid ETKF-3DVAR同化方法相比传统3DVAR可以提供更为准确的分析场,Hybrid方法雷达资料初始化模拟的台风涡旋结构与位置比3DVAR更加接近"真实场",对台风路径预报也有明显改进。通过对比Hybrid S试验与Hybrid F试验发现,Hybrid的正效果主要来源于混合背景误差协方差中的"流依赖"信息,集合平均场代替确定性背景场带来的效果并不显著。 展开更多
关键词 hybrid ETKF-3DVAR WRF模式 多普勒雷达 资料
在线阅读 下载PDF
WRF Hybrid方法同化HY-2A散射计风资料在台风“菲特”预报中的应用 被引量:3
11
作者 刘晓燕 杨学联 邢建勇 《海洋预报》 2016年第1期1-10,共10页
选取台风"菲特"(Fitow,201323)临近登陆过程为试验个例,在WRF模式基础上,采用4种不同的初始化方案,对台风"菲特"进行了72 h预报试验,并分析了模式的初始化对预报效果的影响。试验结果表明,对于台风路径的预报,使用... 选取台风"菲特"(Fitow,201323)临近登陆过程为试验个例,在WRF模式基础上,采用4种不同的初始化方案,对台风"菲特"进行了72 h预报试验,并分析了模式的初始化对预报效果的影响。试验结果表明,对于台风路径的预报,使用集合平均作为初始场进行预报,预报结果相对直接使用GFS资料作为初始场进行预报的结果有明显改善,使用3DVAR同化方法,将HY-2A卫星散射计风场资料同化到集合平均的初始场中,台风路径预报进一步有所改善,而使用Hybrid同化方法将HY-2A卫星散射计风场资料同化到集合平均的初始场中,台风路径进而又有明显改善;但是在台风强度方面的预报,4种初始化方案效果不相上下。 展开更多
关键词 WRF模式 初始化 3DVAR hybrid HY-2A卫星资料 数值预报
在线阅读 下载PDF
基于hybrid拓扑的数据网格副本创建策略 被引量:1
12
作者 卢炎生 胡辉 《计算机应用研究》 CSCD 北大核心 2007年第11期286-288,共3页
数据复制技术被广泛应用于数据网格中,以缩短数据访问时间和传输时间、降低网络带宽消耗。针对包含树型拓扑和环型拓扑的混合式网格拓扑结构,提出了一种考虑网络带宽、网络传输延迟、用户请求频率和站点可用存储空间大小等因素的副本创... 数据复制技术被广泛应用于数据网格中,以缩短数据访问时间和传输时间、降低网络带宽消耗。针对包含树型拓扑和环型拓扑的混合式网格拓扑结构,提出了一种考虑网络带宽、网络传输延迟、用户请求频率和站点可用存储空间大小等因素的副本创建策略,并引入评估函数衡量各因素的影响大小,具有良好的可靠性、可扩展性和自适应性。模拟实验的结果显示此副本创建策略可以有效降低数据平均访问时间。 展开更多
关键词 数据网格 副本创建 混合的 拓扑
在线阅读 下载PDF
基于IMMKF算法的5G无线通信毫米波数据混合波束跟踪
13
作者 杨源皓 《通信与信息技术》 2026年第1期67-71,共5页
5G无线通信毫米波数据混合波束信道存在稀疏多径、动态时变特征,导致跟踪方法精度不足,为此提出基于交互式多模型卡尔曼滤波(IMMKF)算法5G无线通信毫米波数据混合波束跟踪方法。构建毫米波信道模型,借助射线追踪模型刻画信道稀疏多径特... 5G无线通信毫米波数据混合波束信道存在稀疏多径、动态时变特征,导致跟踪方法精度不足,为此提出基于交互式多模型卡尔曼滤波(IMMKF)算法5G无线通信毫米波数据混合波束跟踪方法。构建毫米波信道模型,借助射线追踪模型刻画信道稀疏多径特性,利用一阶高斯-马尔可夫过程描述信道动态时变特征,结合数字/模拟混合波束赋形的系统传输模型,解析发射端与接收端的信号处理架构。采用IMMKF算法,将信号发射角(AoD)、到达角(AoA)及信道增益作为混合波束跟踪状态变量,实现状态实时估计。利用模型概率更新筛选最优模型,通过输出多模型交互加权合并结果,实现混合波速的状态变量跟踪。实验结果显示,本方法在不同场景下的跟踪精度、抗干扰性和鲁棒性方面均较优,可降低5G无线通信在不同场景下波动幅度,保持通信链路稳定。 展开更多
关键词 5G无线通信 毫米波数据 混合波束 波束成形 状态跟踪 卡尔曼滤波
在线阅读 下载PDF
数智时代教育学范式变革——基于理论体系和方法论的再认识
14
作者 刘复兴 王书琴 檀慧玲 《远程教育杂志》 北大核心 2026年第1期3-10,共8页
数智时代的技术变革,正系统性地重塑人类社会运行的底层逻辑,这对植根于工业时代的传统教育学体系构成了全方位的挑战。这一挑战不仅动摇了传统教育学的本体论与认识论基础,也凸显了其方法论在应对当下教育现实时的局限。在此背景下,推... 数智时代的技术变革,正系统性地重塑人类社会运行的底层逻辑,这对植根于工业时代的传统教育学体系构成了全方位的挑战。这一挑战不仅动摇了传统教育学的本体论与认识论基础,也凸显了其方法论在应对当下教育现实时的局限。在此背景下,推动教育学从理论内核到方法体系的范式重构,已成为一项迫切而不可回避的任务。在理论建构层面,核心任务在于构建兼具中国特色与世界水平的数智教育理论体系。具体而言,应着重推进以下方面:重塑教育的本体论,突破单一的“人类中心”视角,将智能机器纳入教育学的研究范畴,构建适配数智教育新形态的概念框架与话语体系。革新教育的认识论,以算法逻辑与计算思维为核心,重构教育理论的底层逻辑。重申教育的价值论,探索立足中国本土的“教育的技术哲学”范式,为数智时代的教育发展提供根本性的价值引领与理论支撑。创新教育研究的方法论,突破技术应用主义的局限,主动契合并引领教育研究的“算法转向”,确立以算法、算力与大数据为核心支撑,同时融合人文关怀的“数据—人文主义”研究范式;围绕“要素重组”与“新要素生成”构建创新驱动的研究逻辑,推动教育核心要素的创造性转化与系统性重构;构建混合式、跨学科融合型研究方法论体系,打破学科壁垒,促进教育学与信息科学、复杂系统理论等学科的深度交叉,以精准把握数智时代复杂教育现象。 展开更多
关键词 数智教育理论 融合式方法论 数据—人文主义 教育的技术哲学 自主知识体系 人智协同 教育算法
在线阅读 下载PDF
GEE遥感特征混合优选提升高海拔树种分类精度
15
作者 周赛 黄凯 +5 位作者 张加龙 王明星 滕晨凯 夏乐艳 姜新周 程滔 《北京林业大学学报》 北大核心 2026年第1期26-40,共15页
【目的】高海拔地区森林资源动态监测面临云雾干扰、训练样本匮乏及树种光谱相似性高等多重瓶颈,严重制约了优势树种空间分布的精准制图。本研究以香格里拉市典型纯林为对象,旨在利用多源遥感数据与多策略特征优选方法提升树种识别精度... 【目的】高海拔地区森林资源动态监测面临云雾干扰、训练样本匮乏及树种光谱相似性高等多重瓶颈,严重制约了优势树种空间分布的精准制图。本研究以香格里拉市典型纯林为对象,旨在利用多源遥感数据与多策略特征优选方法提升树种识别精度与模型泛化能力。【方法】研究基于GEE平台获取Sentinel-2光学时序、Sentinel-1雷达数据及SRTM地形数据,提取光谱、纹理、植被指数、雷达极化、地形及时序特征,构建基础特征集。采用随机森林(RF)模型确定特征优选前的最优方案后,并行J-M距离、ReliefF和RFE算法构建单一特征集,同时对这3种特征集进行并集融合构建并行混合特征集。将单一优选与并行混合特征集分别代入RF模型重新分类,对比优选前后方案确定最优分类方案。采用生产者精度(PA)、用户精度(UA)、调和平均值(F1)、总体精度(OA)和Kappa系数评价分类精度。【结果】(1)基于J-M距离、ReliefF和RFE并行混合的特征优选方案9精度最高(OA为94.82%,Kappa系数为0.94),优于特征优选前的最优方案5。(2)多源遥感数据协同分类效果优于单一数据源,仅使用Sentinel-2数据的OA为83.35%(Kappa系数0.79);依次引入Sentinel-1雷达特征、Sentinel-1的纹理特征、地形特征和Sentinel-2时序特征后,OA分别提升了0.87、6.28、8.08、10.18个百分点(Kappa系数分别为0.81、0.86、0.90、0.92),其中Sentinel-2时序特征的引入使分类精度提升了2.10个百分点。(3)植被指数时序曲线分析表明,优势树种在秋冬季节差异显著,可分离性强。【结论】基于GEE平台多源遥感数据协同J-M距离-ReliefF-RFE并行混合特征优选有效提升了香格里拉森林优势树种的识别精度,系统揭示了其空间分布格局,为高海拔地区森林资源的精准监测提供了技术支撑。 展开更多
关键词 树种分类 多源遥感数据 并行混合特征选择 Sentinel-2时序 Google Earth Engine(GEE) 随机森林(RF) 递归特征消除(RFE) J-M距离 香格里拉
在线阅读 下载PDF
城市内涝模拟中机理驱动、数据驱动及混合模型的对比研究与进展综述
16
作者 陈华 孙竟翔 《净水技术》 2026年第1期19-25,共7页
【目的】针对城市化进程加速与极端暴雨频发背景下城市内涝治理需求,解决当前内涝模拟模型(机理驱动、数据驱动及混合模型)研究总结与对比不足的问题,为内涝精细化模拟及规划决策提供支撑。【方法】本文系统梳理机理驱动模型、数据驱动... 【目的】针对城市化进程加速与极端暴雨频发背景下城市内涝治理需求,解决当前内涝模拟模型(机理驱动、数据驱动及混合模型)研究总结与对比不足的问题,为内涝精细化模拟及规划决策提供支撑。【方法】本文系统梳理机理驱动模型、数据驱动模型及混合模型的研究现状,对比分析各类模型的技术特性、适用场景、优势与局限,重点剖析混合模型的耦合路径及应用案例。【结果】机理驱动模型可精细刻画物理过程,但存在计算效率低、数据依赖强等局限;数据驱动模型能实现快速预测却面临物理可解释性弱、泛化能力受限等问题;混合模型通过整合两类模型优势,在提升模拟精度与效率上表现突出,成为技术融合的重要方向。【结论】本文明确了不同模型的适用边界与发展潜力,为城市内涝精细化模拟、智能决策提供了理论依据与方法参考,凸显了技术融合在应对复杂内涝场景中的实践价值。 展开更多
关键词 排水模型 机理驱动模型 数据驱动模型 混合模型 内涝模拟
在线阅读 下载PDF
Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform 被引量:1
17
作者 Xiangmin Guo Guangjun Liang +1 位作者 Jiayin Liu Xianyi Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期3305-3323,共19页
Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading... Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology. 展开更多
关键词 Blockchain Internet of Things(IoT) blockchain based cognitive computing hybridized data Driven Cognitive Computing(HD2C) Federated Learning(FL) Proof of Authority(PoA)
在线阅读 下载PDF
基于多源掘进参数与LSTM-Transformer的复杂地层盾构姿态预测方法
18
作者 邹道恒 《国防交通工程与技术》 2026年第1期6-12,共7页
针对深大城际黄麻布—石岩中心盾构区间的复杂地层及纵坡变化问题,提出一种基于多源数据融合与深度神经网络的盾构姿态实时预测方法。方法整合掘进参数、地质信息、渣样分析等数据,经特征筛选和规范化处理后,构建LSTM-Transformer混合... 针对深大城际黄麻布—石岩中心盾构区间的复杂地层及纵坡变化问题,提出一种基于多源数据融合与深度神经网络的盾构姿态实时预测方法。方法整合掘进参数、地质信息、渣样分析等数据,经特征筛选和规范化处理后,构建LSTM-Transformer混合神经网络模型,结合两者优势动态学习姿态变化规律,并在复杂地层转换处引入状态残差校正机制。以区间实测数据验证,该方法姿态预测均方误差较传统方法降低36%以上、提前预警时间达2环,能有效辅助掘进参数调控与风险预警、减少管片破损等事故,提升施工效率与安全性。 展开更多
关键词 多源数据融合 LSTM-Transformer混合模型 盾构姿态预测 复杂地层 状态残差校正
在线阅读 下载PDF
Hybrid Modeling for Soft Sensing of Molten Steel Temperature in LF 被引量:5
19
作者 TIAN Hui-xin MAO Zhi-zhong WANG An-na 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第4期1-6,共6页
Aiming at the limitations of traditional thermal model and intelligent model, a new hybrid model is established for soft sensing of the molten steel temperature in LF. Firstly, a thermal model based on energy conserva... Aiming at the limitations of traditional thermal model and intelligent model, a new hybrid model is established for soft sensing of the molten steel temperature in LF. Firstly, a thermal model based on energy conservation is described; and then, an improved intelligent model based on process data is presented by ensemble ELM (extreme learning machine) for predicting the molten steel temperature in LF. Secondly, the self-adaptive data fusion is pro- posed as a hybrid modeling method to combine the thermal model with the intelligent model. The new hybrid model could complement mutual advantage of two models by combination. It can overcome the shortcoming of parameters obtained on-line hardly in a thermal model and the disadvantage of lacking the analysis of ladle furnace metallurgical process in an intelligent model. The new hybrid model is applied to a 300 t LF in Baoshan Iron and Steel Co Ltd for predicting the molten steel temperature. The experiments demonstrate that the hybrid model has good generalization performance and high accuracy. 展开更多
关键词 ladle furnace hybrid modeling soft sensing thermal model data fusion
原文传递
上一页 1 2 54 下一页 到第
使用帮助 返回顶部