期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于改进PSO-GWO算法的油气悬架参数优化 被引量:3
1
作者 冯勇 周旸 +2 位作者 李阁强 毛波 王帅 《兵器装备工程学报》 CAS CSCD 北大核心 2022年第8期317-324,共8页
为了改善工程车辆的车身姿态、舒适性与稳定性,协调三者之间的关系,以某三轴运输车为例,建立九自由度整车动力学模型。以车身加速度、悬架动挠度、轮胎动载荷3个性能指标为优化目标,非线性刚度与阻尼为优化变量,结合Simulink仿真模型,... 为了改善工程车辆的车身姿态、舒适性与稳定性,协调三者之间的关系,以某三轴运输车为例,建立九自由度整车动力学模型。以车身加速度、悬架动挠度、轮胎动载荷3个性能指标为优化目标,非线性刚度与阻尼为优化变量,结合Simulink仿真模型,提出了一种基于改进PSO-GWO混合算法的油气悬架系统参数优化策略。结果表明,与标准PSO算法相比,改进PSO-GWO算法的收敛速度与最优解精度均有较大提升;在不同路面等级下,优化后悬架系统的动载荷指标有所恶化,但基本不影响车辆的操纵稳定性;加速度均方根与动挠度均方根降低,舒适性与车身姿态明显改善。 展开更多
关键词 油气悬架 PSO-gwo混合算法 多目标优化 稳定性 舒适性 车身姿态
在线阅读 下载PDF
基于GWO-ABC的混合算法研究 被引量:1
2
作者 冯严冰 钱锦 《邢台职业技术学院学报》 2023年第1期85-91,共7页
大多数种群优化算法面临的共同缺陷是全局搜索能力不足,易陷入局部最优解。文章基于灰狼优化算法和人工蜂群算法,引入混沌映射和OBL策略,提出了新型GWO-ABC混合优化算法。通过GWO-ABC算法优化了FOPID控制器的参数,仿真结果表明,该算法... 大多数种群优化算法面临的共同缺陷是全局搜索能力不足,易陷入局部最优解。文章基于灰狼优化算法和人工蜂群算法,引入混沌映射和OBL策略,提出了新型GWO-ABC混合优化算法。通过GWO-ABC算法优化了FOPID控制器的参数,仿真结果表明,该算法性能优于其它算法。 展开更多
关键词 灰狼优化算法 人工蜂群算法 gwo-ABC混合优化算法 FOPID控制器
在线阅读 下载PDF
基于改进混合灰狼优化算法的无人机三维路径规划 被引量:12
3
作者 王海群 邓金铭 +1 位作者 张怡 曹清萌 《无线电工程》 2024年第4期918-927,共10页
针对传统灰狼优化(Grey Wolf Optimization, GWO)算法求解无人机三维路径规划问题时会出现收敛速度慢、容易陷入局部最优等问题,提出一种改进混合灰狼优化算法——CLGWO。基于Cat混沌映射和反向学习策略初始化灰狼种群,为算法全局搜索... 针对传统灰狼优化(Grey Wolf Optimization, GWO)算法求解无人机三维路径规划问题时会出现收敛速度慢、容易陷入局部最优等问题,提出一种改进混合灰狼优化算法——CLGWO。基于Cat混沌映射和反向学习策略初始化灰狼种群,为算法全局搜索过程中丰富种群多样性奠定基础;提出新型非线性收敛因子的改进策略,提高算法全局搜索能力。在灰狼位置更新中提出引入狮群优化(Lion Swarm Optimization, LSO)算法的扰动因子和动态权重,使灰狼具有主动的搜索能力,避免因灰狼失去种群多样性而陷入局部最优。为验证改进算法的有效性,进行了8个国际通用的标准测试函数收敛性对比实验和无人机三维路径规划仿真实验。实验结果表明,CLGWO算法在单峰、多峰函数上均有较好的收敛性、较高的寻优精度;三维路径仿真环境下,CLGWO算法的平均路径长度、平均迭代次数、平均运行时间相比于GWO算法分别优化了33%、31%、52%,且路径转折少,能较好地得到全局最优值,验证了CLGWO算法的有效性。 展开更多
关键词 无人机 三维路径规划 混合灰狼优化算法 Cat混沌映射 狮群优化算法
在线阅读 下载PDF
灰狼与郊狼混合优化算法及其聚类优化 被引量:25
4
作者 张新明 姜云 +3 位作者 刘尚旺 刘国奇 窦智 刘艳 《自动化学报》 EI CAS CSCD 北大核心 2022年第11期2757-2776,共20页
郊狼优化算法(Coyote optimization algorithm,COA)是最近提出的一种新颖且具有较大应用潜力的群智能优化算法,具有独特的搜索机制和能较好解决全局优化问题等优势,但在处理复杂优化问题时存在搜索效率低、可操作性差和收敛速度慢等不足... 郊狼优化算法(Coyote optimization algorithm,COA)是最近提出的一种新颖且具有较大应用潜力的群智能优化算法,具有独特的搜索机制和能较好解决全局优化问题等优势,但在处理复杂优化问题时存在搜索效率低、可操作性差和收敛速度慢等不足.为弥补其不足,并借鉴灰狼优化算法(Grey wolf optimizer,GWO)的优势,提出了一种COA与GWO的混合算法(Hybrid COA with GWO,HCOAG).首先提出了一种改进的COA(Improved COA,ICOA),即将一种高斯全局趋优成长算子替换原算法的成长算子以提高搜索效率和收敛速度,并提出一种动态调整组内郊狼数方案,使得算法的搜索能力和可操作性都得到增强;然后提出了一种简化操作的GWO(Simplified GWO,SGWO),以提高算法的可操作性和降低其计算复杂度;最后采用正弦交叉策略将ICOA与SGWO二者融合,进一步获得更好的优化性能.大量的经典函数和CEC2017复杂函数优化以及K-Means聚类优化的实验结果表明,与COA相比,HCOAG具有更高的搜索效率、更强的可操作性和更快的收敛速度,与其他先进的对比算法相比,HCOAG具有更好的优化性能,能更好地解决聚类优化问题. 展开更多
关键词 优化算法 灰狼优化算法 郊狼优化算法 混合算法 聚类优化
在线阅读 下载PDF
基于HPO-SVM的拖拉机柴油机故障诊断研究 被引量:1
5
作者 周俊博 肖茂华 +2 位作者 朱烨均 宋宁 张婕 《南京农业大学学报》 CAS CSCD 北大核心 2023年第2期416-427,共12页
[目的]针对传统机器学习在拖拉机柴油机故障诊断应用中的局限性,本研究提出一种HPO-SVM(hybrid population optimization-support vector machine)拖拉机柴油机故障诊断模型。[方法]采用SVM(support vector machine)作为故障诊断模型的... [目的]针对传统机器学习在拖拉机柴油机故障诊断应用中的局限性,本研究提出一种HPO-SVM(hybrid population optimization-support vector machine)拖拉机柴油机故障诊断模型。[方法]采用SVM(support vector machine)作为故障诊断模型的基体,针对SVM优化问题,以PSO(particle swarm optimization)和GWO(grey wolf optimization)算法为基础提出了HPO(hybrid population optimization)算法对SVM的重要参数c、g进行优化;分析柴油机的故障机制,确定反映故障发生的数据信号;基于CAN(controller area network)总线和Arduino UNO-MCP 2551组合模块采集潍柴WP6型拖拉机柴油机传感器信号数据对HPO-SVM的性能进行测试,并将测试结果与SVM、PSO-SVM、GWO-SVM、GWOPSO-SVM和LWD-QPSO-SOMBP(linear weight decrease-quantum particle swarm optimization-self organizing maps back propagation)神经网络的测试结果进行对比。[结果]相比于其他4种SVM模型,HPO-SVM充分发挥了GWO算法和PSO算法在SVM参数寻优方面的优势,故障诊断准确率大幅度提升,相比于SVM,诊断总准确率由80%上升至100%,提高20%;HPO算法提高了单种群优化算法的寻优性能,相较于PSO算法,HPO算法最佳适应度由70提升至90,提高22.22%,达到最佳适应度时的迭代次数由105下降至27,下降74.29%;为避免偶然性,对5种SVM模型采取6次重复试验,试验结果表明,相较于其他4种模型HPO-SVM模型的性能更稳定,HPO-SVM的6次诊断总准确率均为100%;HPO-SVM采用SVM作为故障诊断模型,缓解优化算法的寻优压力,提高模型的效率,相比于LWD-QPSO-SOMBP神经网络,HPO-SVM模型的运行时间由45 s降低至15 s,下降66.67%。[结论]本文研究结果可为高效率拖拉机柴油机故障诊断提供参考。 展开更多
关键词 农业机械 柴油机 故障诊断 支持向量机 PSO算法 gwo算法 HPO算法
在线阅读 下载PDF
基于灰狼-鸟群算法的特征权重优化方法 被引量:1
6
作者 严爱军 严晶 《北京工业大学学报》 CAS CSCD 北大核心 2023年第10期1088-1098,共11页
针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;... 针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。 展开更多
关键词 特征权重 灰狼优化(grey wolf optimizer gwo)算法 鸟群算法(bird swarm algorithm BSA) 混合算法 问题求解 模式分类
在线阅读 下载PDF
融入等温过程的改进灰狼优化算法
7
作者 戈阳 《现代电子技术》 2022年第17期117-122,共6页
灰狼优化算法是一种新颖的群智能优化算法,针对该算法存在的平衡全局探索和局部开发效率低、易陷入局部极值的问题,提出融入等温过程的改进灰狼优化算法IGWOSA。为了平衡算法开发与探索的能力,IGWOSA在灰狼位置更新操作后,融入等温过程... 灰狼优化算法是一种新颖的群智能优化算法,针对该算法存在的平衡全局探索和局部开发效率低、易陷入局部极值的问题,提出融入等温过程的改进灰狼优化算法IGWOSA。为了平衡算法开发与探索的能力,IGWOSA在灰狼位置更新操作后,融入等温过程。根据metropolis准则对更新的新位置进行取舍,从而增添了算法跳出局部极值的能力。同时,对α、β、δ灰狼赋予高斯扰动变异操作,进一步提升搜索效率。实验结果表明,对于13个基准函数,改进策略能有效提升算法性能;高斯扰动对算法性能有显著提升效果;IGWOSA与最先进的同类算法EOGWO、EGWO、CGWO相比,在搜索效率和性能方面优势明显。其中,IGWOSA尤其擅长处理单峰函数,更是以数量级的优势优于对比算法,但是,在处理多峰函数时,EGWO以微弱的优势优于IGWOSA。 展开更多
关键词 混合灰狼优化算法 搜索性能 灰狼优化算法 等温过程 高斯扰动 METROPOLIS准则 基准函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部