期刊文献+
共找到4,193篇文章
< 1 2 210 >
每页显示 20 50 100
Probabilistic Site Investigation Optimization of Gassy Soils Based on Conditional Random Field and Monte Carlo Simulation
1
作者 Shaolin Ding 《World Journal of Engineering and Technology》 2025年第1期1-11,共11页
Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of s... Gassy soils are distributed in relatively shallow layers the Quaternary deposit in Hangzhou Bay area. The shallow gassy soils significantly affect the construction of underground projects. Proper characterization of spatial distribution of shallow gassy soils is indispensable prior to construction of underground projects in the area. Due to the costly conditions required in the site investigation for gassy soils, only a limited number of gas pressure data can be obtained in engineering practice, which leads to the uncertainty in characterizing spatial distribution of gassy soils. Determining the number of boreholes for investigating gassy soils and their corresponding locations is pivotal to reducing construction risk induced by gassy soils. However, this primarily relies on the engineering experience in the current site investigation practice. This study develops a probabilistic site investigation optimization method for planning investigation schemes (including the number and locations of boreholes) of gassy soils based on the conditional random field and Monte Carlo simulation. The proposed method aims to provide an optimal investigation scheme before the site investigation based on prior knowledge. Finally, the proposed approach is illustrated using a case study. 展开更多
关键词 Gassy Soils Site Investigation UNCERTAINTY conditional Random Field Monte Carlo simulation
在线阅读 下载PDF
Mixed D-vine copula-based conditional quantile model for stochastic monthly streamflow simulation 被引量:2
2
作者 Wen-zhuo Wang Zeng-chuan Dong +3 位作者 Tian-yan Zhang Li Ren Lian-qing Xue Teng Wu 《Water Science and Engineering》 EI CAS CSCD 2024年第1期13-20,共8页
Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate b... Copula functions have been widely used in stochastic simulation and prediction of streamflow.However,existing models are usually limited to single two-dimensional or three-dimensional copulas with the same bivariate block for all months.To address this limitation,this study developed a mixed D-vine copula-based conditional quantile model that can capture temporal correlations.This model can generate streamflow by selecting different historical streamflow variables as the conditions for different months and by exploiting the conditional quantile functions of streamflows in different months with mixed D-vine copulas.The up-to-down sequential method,which couples the maximum weight approach with the Akaike information criteria and the maximum likelihood approach,was used to determine the structures of multivariate Dvine copulas.The developed model was used in a case study to synthesize the monthly streamflow at the Tangnaihai hydrological station,the inflow control station of the Longyangxia Reservoir in the Yellow River Basin.The results showed that the developed model outperformed the commonly used bivariate copula model in terms of the performance in simulating the seasonality and interannual variability of streamflow.This model provides useful information for water-related natural hazard risk assessment and integrated water resources management and utilization. 展开更多
关键词 Stochastic monthly streamflow simulation Mixed D-vine copula conditional quantile model Up-to-down sequential method Tangnaihai hydrological station
在线阅读 下载PDF
A rigorous formulation of drain boundary conditions for groundwater flow modeling in geotechnical engineering
3
作者 Wan-Jun Lei Yi-Feng Chen +3 位作者 Wang Ren Yunrui Deng Ran Hu Zhibing Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5385-5397,共13页
Drains play an important role in seepage control in geotechnical engineering.The enormous number and one-dimensional(1D)geometry of drainage holes make their nature difficult to be accurately modeled in groundwater fl... Drains play an important role in seepage control in geotechnical engineering.The enormous number and one-dimensional(1D)geometry of drainage holes make their nature difficult to be accurately modeled in groundwater flow simulation.It has been well understood that drains function by presenting discharge boundaries,which can be characterized by water head,no-flux,unilateral or mixed water head-unilateral boundary condition.It has been found after years of practices that the flow simulation may become erroneous if the transitions among the drain boundary conditions are not properly considered.For this,a rigorous algorithm is proposed in this study to detect the onset of transitions among the water head,noflux and mixed water head-unilateral boundary conditions for downwards-drilled drainage holes,which theoretically completes the description of drain boundary conditions.After verification against a numerical example,the proposed algorithm is applied to numerical modeling of groundwater flow through a gravity dam foundation.The simulation shows that for hundreds of downwards-drilled drainage holes used to be prescribed with water head boundary condition,56%and 2%of them are transitioned to mixed water head-unilateral and no-flux boundary conditions,respectively.The phreatic surface around the drains will be overestimated by 25e33 m without the use of the mixed boundary condition.For the first time,this study underscores the importance of the mixed water head-unilateral boundary condition and the proposed transition algorithm in drain modeling,which may become more essential for simulation of transient flow because of groundwater dynamics. 展开更多
关键词 Drainage hole Boundary condition Seepage control Numerical simulation Dam foundation
在线阅读 下载PDF
A conditioned discrete fracture network for stability analysis of rock wedge in an open pit mine
4
作者 Yilin Zhao Kamran Esmaeili Mohammad Rezaei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6496-6516,共21页
The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of ... The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of an open pit slope.For this purpose,spatially conditioned DFN models were developed for the pit walls at Tasiast mine using comprehensive structural data from the mine.Using Sequential Gaussian Simulation(SGS),volumetric fracture intensities(P32)were modeled across the entire mine site in the form of 3D block models.The simulated P32 block models were used as the input constraints for conditional DFN fracture generation,where the DFN grid dimension is the same as the SGS 3D blocks.The spatially constrained DFN models were further calibrated using aerial fracture intensities(P21)data from the pit walls,obtained by a survey of the pit walls using an unmanned aerial vehicle(UAV)and measured traces of joints from 3D point cloud data.The final DFN model is expected to honor the fracture intensities gathered through different means with optimal model accuracy.Finally,bench-scale and interramp scale rock wedge slope stability analyses were conducted using the calibrated conditional DFN models.This work proves the significance of conditioned DFN models in rock wedge stability analysis.Such models provide detailed information regarding rock wedge stability so that site monitoring and prevention plans can be conducted with higher efficiency. 展开更多
关键词 conditional simulation Discrete fracture network(DFN) Sequential Gaussian simulation(SGS) Open pit slope Rock wedge stability
在线阅读 下载PDF
Absorbing Boundary Conditions for Simulating Water Waves Near Solid Bodies
5
作者 José Marie Orellana 《Journal of Applied Mathematics and Physics》 2024年第10期3502-3520,共19页
The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifical... The objective of this paper is to present a new method for designing absorbing or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the case study of the modelling of a solid body in water, specifically the capillary gravity waves generated by its motion at the surface. The study analyses the flow of an inviscid, barotropic, and compressible fluid around the stationary solid body. The dynamic behaviour of the fluid is analysed using a two-dimensional coupled Neumann-Kelvin model extended with capillarity and inertia terms. For computational purposes, it is necessary to truncate the unbounded spatial domain with artificial boundaries and then introduce appropriate absorbing boundary conditions. The propagation of short wavelength waves in a convective fluid medium with significant differences in properties between the interior and the surface of the fluid presents a number of difficulties in the design of these conditions. The results are illustrated numerically and commented upon. 展开更多
关键词 Absorbing Boundary condition Fluid-Structure Interaction Capillary-Gravity Waves Numerical simulations
在线阅读 下载PDF
Multiphysics simulation method of Lamb wavepropagation with piezoelectric transducers under load condition 被引量:8
6
作者 Lei QIU Xixi YAN +1 位作者 Xiaodong LIN Shenfang YUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第5期1071-1086,共16页
Lamb Wave(LW) simulation under time-varying conditions is an effective and low cost way to study the problem of the low reliability of the structural health monitoring methods based on the LW and Piezoelectric Transdu... Lamb Wave(LW) simulation under time-varying conditions is an effective and low cost way to study the problem of the low reliability of the structural health monitoring methods based on the LW and Piezoelectric Transducer(PT). In this paper, a multiphysics simulation method of the LW propagation with the PTs under load condition is proposed. With this method, two key mechanisms of the load influence on the LW propagation are considered and coupled with each other. The first mechanism is the acoustoelastic effect which is the main reason of the LW velocity change. The second key mechanism is the load influence on piezoelectric materials, which results in a change of the amplitude. Based on the computational platform of the COMSOL Multiphysics, a multiphysics simulation model of the LW propagation with the PTs under load condition is established. The simulation model includes two physical phenomena. The first one is called solid mechanics, which is used to simulate the acoustoelastic effect being combined with the hyperelastic material properties of the structure in which the LW propagates. The second one is called electromechanical coupling, which considers the simulation of the piezoelectric effect of the PTs for the LW excitation and sensing. To simulate the load influence on piezoelectric materials, a non-linear numerical model of the relationship between the load and the piezoelectric coefficient d31 is established based on an experiment of the load influence on the LW. The simulation results under uniaxial tensile load condition are obtained and are compared with the data obtained from the experiment. It shows that the variations of the phase velocity and amplitude of the LW obtained from the simulation model match the experimental results well. 展开更多
关键词 Acoustoelastic effect LAMB wave MULTIPHYSICS simulation PIEZOELECTRIC COEFFICIENT Structural health monitoring TIME-VARYING condition
原文传递
Application of inverse method to estimation of boundary conditions during investment casting simulation 被引量:5
7
作者 Haipeng JIN Jiarong LI Dong PAN 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第6期429-434,共6页
Inverse method was used in single crystal superalloy DD6 processing simulation during solidification. Numerical modeling coupled with experiments has been used to estimate the interface heat transfer coefficient (IHT... Inverse method was used in single crystal superalloy DD6 processing simulation during solidification. Numerical modeling coupled with experiments has been used to estimate the interface heat transfer coefficient (IHTC) between the surface of slab casting and inner mold. Calculated temperature dependent values of IHTC were obtained from a numerical solution. The calculated temperatures agreed well with the measurement of cooling profile. 展开更多
关键词 Numerical simulation Single crystal Inverse method Boundary conditions
在线阅读 下载PDF
Influence of Cooling Conditions in Casting Cu-Ni Alloy Based on Numerical Simulation 被引量:4
8
作者 庞玉华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期68-72,共5页
The most common and serious defect in Cu-Ni alloy casting is porosity. To solve the problem, accurate casting design and proper design of gating system are necessary. It can be predicted and designed by means of compu... The most common and serious defect in Cu-Ni alloy casting is porosity. To solve the problem, accurate casting design and proper design of gating system are necessary. It can be predicted and designed by means of computer simulation of casting solidification. Based on the casting process of the Cu-Ni alloy, the simulation software of diathermanous—flowing—stress coupling ProCAST was used to simulate the Cu-Ni alloy solidification process about the defects and temperature field. By combining experimental results with the simulation results, the quality of casting on some cooling conditions were analyzed. Furthermore, a better cooling condition for solidification process of the Cu-Ni alloy was chosen to improve the quality of the casting. The simulation results indicate that the quality of Cu-Ni alloy casting is the best when it is on the cooling condition of the permanent mold with the insulated riser system. 展开更多
关键词 cooling condition Cu-Ni alloy SOLIDIFICATION numerical simulation PROCAST
原文传递
Discrete element simulation of mechanical characteristic of conditioned sands in earth pressure balance shield tunneling 被引量:12
9
作者 武力 屈福政 《Journal of Central South University》 SCIE EI CAS 2009年第6期1028-1033,共6页
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand... The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine. 展开更多
关键词 conditioned sands slump test direct shear test discrete element simulation earth pressure balance shield machine
在线阅读 下载PDF
Physical simulation of hydrodynamic conditions in high rank coalbed methane reservoir formation 被引量:5
10
作者 WANG Bo JIANG Bo +5 位作者 LIU Lei ZHENG Gui-qiang QIN Yong WANG Hong-yan LIU Hong-lin LI Gui-zhong 《Mining Science and Technology》 EI CAS 2009年第4期435-440,共6页
In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the eff... In order to select highly productive and enriched areas of high rank coalbed methane reservoirs, based on hydrologic geology as one of the main factors controlling coalbed methane (CBM) reservoir formations, the effect of hydrodynamic forces controlling CBM reservoir formations was studied by a physical simulation experiment in which we used CBM reservoir simulation facilities. The hydrodynamic conditions of high coal rank reservoirs in the Qinshui basin were analyzed. Our experiment shows the following results: under strong hydrodynamic alternating action, 6C~ of coalbed methane reservoir changed from the start at -2.95% ~ -3.66%, and the lightening process occurred in phases; the CI-I4 volume reduced from 96.35% to 12.42%; the CO2 vo- lume decreased from 0.75% in sample 1 to 0.68% in sample 2, then rose to 1.13% in sample 3; the N2 volume changed from 2.9% in sample 1 to 86.45% in sample 3. On one hand, these changes show the complexity of CBM reservoir formation; on the other hand, they indicate that strong hydrodynamic actions have an unfavorable impact on CBM reservoir formation. It was found that the gas volume and hydrodynamic intensity were negatively correlated and low hydrodynamic flow conditions might result in highly productive and enriched areas of high rank CBM. 展开更多
关键词 high coal rank coalbed methane reservoir hydrodynamic condition physical simulation Qinshui basin
在线阅读 下载PDF
Computational fluid dynamics simulation of friction stir welding:A comparative study on different frictional boundary conditions 被引量:6
11
作者 Gaoqiang Chen Qingxian Ma +3 位作者 Shuai Zhang Jianjun Wu Gong Zhang Qingyu Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期128-134,共7页
Numerical simulation based on computational fluid dynamics (CFD) is a useful approach for quantitatively investigating the underlying thermal-mechanical conditions during FSW, such as temperature field and material ... Numerical simulation based on computational fluid dynamics (CFD) is a useful approach for quantitatively investigating the underlying thermal-mechanical conditions during FSW, such as temperature field and material deformation field. One of the critical issues in CFD simulation of FSW is the use of the frictional boundary condition, which represents the friction between the welding tool and the workpiece in the numerical models. In this study, three-dimensional numerical simulation is conducted to analyze the heat transfer and plastic deformation behaviors during the FSW of AA2024. For comparison purposes, both the boundary velocity (BV) models and the boundary shear stress (BSS) models are employed in order to assess their performances in predicting the temperature and material deformation in FSW. It is interesting to note that different boundary conditions yield similar predictions on temperature, but quite different predictions on material deformation. The numerical predictions are compared with the experimental results. The predicted deformation zone geometry by the BSS model is consistent with the experimental results while there is large difference between the predictions by the BV models and the experimental measurements. The fact that the BSS model yields more reasonable predictions on the deformation zone geometry is attributed to its capacity to automatically adjust the contact state at the tool/workpiece interface. Based on the favorable predictions on both the temperature field and the material deformation field, the BSS model is suggested to have a better performance in numerical simulation of FSW than the BV model. 展开更多
关键词 Friction stir welding Numerical simulation Frictional boundary condition Heat transfer Material deformation
原文传递
FEM simulation and experimental verification of roll forming and springback process under complex contact conditions 被引量:1
12
作者 阎昱 Wu Qingyuan +1 位作者 Ai Zhengqing Jia Fanghui 《High Technology Letters》 EI CAS 2015年第4期433-438,共6页
The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large a... The application of advanced high strength steel (AHSS) has an important significance in the development of the lightweight of automobile, but the parts made of AHSS usually have defects, such as fracture and large amount of springback, etc. In this paper, a model of multi-pass roll form- ing and springback process of AHSS is established with finite element software ABAQUS. Then a roll forming experiment is performed, and simulation and experimental results have been compared and analyzed. The model is established under complex contact conditions, including self-contact condi- tion. The results shows that during the process of sheet bending, large Mises stresses appear at ben- ding corners. The smaller the bending radius is, the larger the Mises stress and strain are. Thick- ness of sheet metal changes exceeds a certain limit, the differently if the bending radius is different. When the bending radius change tendency of the sheet thickness turns from increase to decrease. 展开更多
关键词 roll forming FEM simulation SPRINGBACK EXPERIMENT complex contact condition
在线阅读 下载PDF
Numerical simulation of groundwater under complex karst conditions and the prediction of roadway gushing in a coal mine:a case study in the Guang'an Longtan Reservoir in Sichuan Province, China 被引量:2
13
作者 Jiang Chengxin Shi Huapeng +1 位作者 Li Ya Yu Hongming 《Acta Geochimica》 EI CAS CSCD 2016年第1期72-84,共13页
Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotro... Numerical simulation of groundwater in karst areas has long been restricted by the difficulty of generalizing the hydrogeological conditions of reservoirs and of determining the relevant parameters due to the anisotropy and discontinuity of the karst water-bearing media in these areas. In this study, we used the Guang'an Longtan Coal mine in Sichuan as an example, and generalized the complex hydrogeological conditions in the reservoir area. A finite element numerical flow model was used to simulate current and future scenarios of roadway gushing at the bottom of the coal mine at pile number 1 + 700 m. The results show that the roadway section corresponding to valleys has a gushing quantity of 4323.8–4551.25 m^3/d before impoundment. Modeled water inflow after impoundment increased to 1.6 times the water inflow before impoundment, which threatens the impoundment as well as the roadway's normal operation. Therefore, roadway processing measures are needed to guarantee the safety of the impoundment and of the mining operation. 展开更多
关键词 Karst reservoir Roadway gushing Numerical simulation Hydrogeological conditions generalization
在线阅读 下载PDF
A study on periodic boundary condition in direct numerical simulation for gas–solid flow
14
作者 Shiwen Liu Xiaowen Liu +2 位作者 Feiguo Chen Limin Wang Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第1期236-241,共6页
Direct numerical simulation(DNS) of gas–solid flow at high resolution has been carried out by coupling the lattice Boltzmann method(LBM) for gas flow and the discrete element method(DEM) for solid particles. However,... Direct numerical simulation(DNS) of gas–solid flow at high resolution has been carried out by coupling the lattice Boltzmann method(LBM) for gas flow and the discrete element method(DEM) for solid particles. However,the body force periodic boundary condition(FPBC) commonly used to cut down the huge computational cost of such simulation has faced accuracy concerns. In this study, a novel two-region periodic boundary condition(TPBC) is presented to remedy this problem, with the flow driven in the region with body force and freely evolving in the other region. With simulation cases for simple circulating fluidized bed risers, the validity and advantages of TPBC are demonstrated with more reasonable heterogeneity of the particle distribution as compared to the corresponding case with FPBC. 展开更多
关键词 Direct numerical simulation PERIODIC BOUNDARY condition Two-region PERIODIC BOUNDARY condition Gas–solid flow HETEROGENEITY
在线阅读 下载PDF
A Molecular Dynamics Simulation for Periodic Boundary Condition in the Bending Process of Ag/Ni Composite Interfaces
15
作者 罗旋 费维栋 +1 位作者 钱革非 李超 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第4期69-72,共4页
A MolecularDynamicsSimulationforPeriodic BoundaryConditionintheBendingProcessofAg/NiCompositeInterfacesLUOXu... A MolecularDynamicsSimulationforPeriodic BoundaryConditionintheBendingProcessofAg/NiCompositeInterfacesLUOXuan;FEIWeidong;QIA... 展开更多
关键词 ss: PERIODIC BOUNDARY condition MOLECULAR DYNAMICS simulation COMPOSITE interface
在线阅读 下载PDF
Quantitative Integration of High-Resolution Hydrogeophysical Data: A Novel Approach to Monte-Carlo-Type Conditional Stochastic Simulations and Implications for Hydrological Predictions
16
作者 Baptiste Dafflon James Irving Klaus Holliger 《Journal of China University of Geosciences》 SCIE CSCD 2009年第3期580-591,共12页
Geophysical techniques can help to bridge the inherent gap that exists with regard to spatial resolution and coverage for classical hydrological methods. This has led to the emergence of a new and rapidly growing rese... Geophysical techniques can help to bridge the inherent gap that exists with regard to spatial resolution and coverage for classical hydrological methods. This has led to the emergence of a new and rapidly growing research domain generally referred to as hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters, their inherent trade-off between resolution and range, as well as the notoriously site-specific nature of petrophysical parameter relations, the fundamental usefulness of multi-method surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database into a unified model of the probed subsurface region that is consistent with all available measurements. To this end, we present a novel approach toward hydrogeophysical data integration based on a Monte-Carlo-type conditional stochastic simulation method that we consider to be particularly suitable for high-resolution local-scale studies. Monte Carlo techniques are flexible and versatile, allowing for accounting for a wide variety of data and constraints of differing resolution and hardness, and thus have the potential of providing, in a geostatistical sense, realistic models of the pertinent target parameter distributions. Compared to more conventional approaches, such as co-kriging or cluster analysis, our approach provides significant ad- vancements in the way that larger-scale structural information eontained in the hydrogeophysieal data can be accounted for. After outlining the methodological background of our algorithm, we present the results of its application to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the detailed local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to a field dataset collected at the Boise Hydrogeophysical Research Site. Finally, we compare the performance of our data integration approach to that of more conventional methods with regard to the prediction of flow and transport phenomena in highly heterogeneous media and discuss the implications arising. 展开更多
关键词 aquifer characterization conditional simulation GEOSTATISTICS HYDROGEOPHYSICS HYDROLOGY quantitative data integration Monte Carlo methods simulated annealing flow and transport modeling.
原文传递
Assessment of Multiple Working Condition System Reliability with Agent-Based Simulation Method
17
作者 曹军海 邢彪 申莹 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期974-978,共5页
The mission reliability assessment plays a great role in logistics planning and supporting resource optimization of complex system.But the current problem,which is difficult to solve,is how to model and analyze the ch... The mission reliability assessment plays a great role in logistics planning and supporting resource optimization of complex system.But the current problem,which is difficult to solve,is how to model and analyze the characters of system reliability under the complex mission profile.In order to solve the problem,an agentbased simulation method was used to assess reliability for complex systems with various random working conditions.A multi-working condition simulation agent(MA)was designed and used to simulate the random transferring process of working conditions of system,and it cooperated with system simulation agents(SAs)and unit simulation agents(UAs)to realize system mission reliability(MR)simulation.Through simulation experiments,effect of multiple working conditions mission on the reliability of system was analyzed by comparing with the basic reliability condition.Feasibility and efficiency of the method were proved through simulation experiments of the case system.The research result provides a viable and useful method and a solution for MR analysis and assessment of complex systems in multi-working conditions,which can help to evaluate the reliability of operating system orienting to the practical mission and environment,and it is meaningful for the reliability analysis and the design of complex systems. 展开更多
关键词 system reliability multi-working condition system agentbased simulation mission profile reliability assessment
在线阅读 下载PDF
Turbulent Inlet Conditions Modeling using Large-eddy Simulations
18
作者 M.M.R.Damasceno J.M.Vedovoto A.da Silveira-Neto 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第2期105-132,共28页
Turbulence is a phenomenon which presents peculiarities when it is experimented or simulated.This occurs due to its complexity and high sensibility to the inlet conditions of the turbulent flow fields,as well as the p... Turbulence is a phenomenon which presents peculiarities when it is experimented or simulated.This occurs due to its complexity and high sensibility to the inlet conditions of the turbulent flow fields,as well as the presence of a large range of time and length scales.A simplification for this situation is obtained with the use of approximations and turbulence models.In the present work,the Largeeddy Simulations methodology was applied,aiming the modeling of the previously mentioned complexity,which consists in using a filter to resolve the large scales while the remaining scales were determined by classical and dynamic Smagorinsky models.Three different approximations for the inlet conditions were applied:white noise,Random Flow Generation(RFG)and Synthetic Eddy Method(SEM).It was possible to realize that the use of the dynamic Smagorinky model and the RFG or SEM methodologies resulted in a better characterization of the studied flow. 展开更多
关键词 TURBULENT INLET conditionS TURBULENCE MODELS large-eddy simulations
在线阅读 下载PDF
Molecular Dynamics Simulation for Grain Boundary Deformation under Tensile Loading Condition
19
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期145-146,共2页
关键词 simulation Molecular Dynamics simulation for Grain Boundary Deformation under Tensile Loading condition
在线阅读 下载PDF
Numerical simulation of tritium behavior under a postulated accident condition for CFETR TEP system
20
作者 Hai-Xia Wang Xue-Wei Fu +2 位作者 Wei-Ping Liu Tao-Sheng Li Jie Yu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期206-218,共13页
China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the saf... China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant. 展开更多
关键词 China Fusion Engineering Test Reactor(CFETR) Tokamak Exhaust Processing(TEP)system Numerical simulation Tritium transport behavior Tritium confinement system Accident condition
在线阅读 下载PDF
上一页 1 2 210 下一页 到第
使用帮助 返回顶部