Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsucc...Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsuccessful.Methods:Here,we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints.Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells,and then the expanded cells were applied to establish humanized mice.The human immune system was evaluated according to the kinetics of dendritic cells,monocytes,T-cell subsets,and cytokines.To fully stimulate the immune response and to obtain B-cell precursor NAML-6-and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells,we used the inactivated cells above to treat humanized mice twice a day every 7 days.Then,human T cells were processed for TCRβ-chain(TRB)sequencing analysis.After the repertoires had been constructed,features such as the fraction,diversity,and immune signature were investigated.Results:The results demonstrated an increase in diversity and clonality of T cells after treatment.The preferential usage and features of TRBV,TRBJ,and the V–J combination were also changed.The stress also induced highly clonal Science and Technology,Grant/Award Number:2021C03010;Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004 expansion.Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice.Conclusions:We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools.Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells.It therefore has the potential to greatly benefit cancer treatment.展开更多
Background:Most mutations in the COL6A3 gene lead to collagen VI-related myopathies.This is due to a reduced expression or mislocalization of the COL6A3 protein.Therefore,studying the consequence of knocking out the C...Background:Most mutations in the COL6A3 gene lead to collagen VI-related myopathies.This is due to a reduced expression or mislocalization of the COL6A3 protein.Therefore,studying the consequence of knocking out the Col6a3 gene in mouse models is relevant,but the Col6a3 mouse models reported so far do not entirely abolish COL6A3 protein expression.Methods:Here,we present the development,validation and preliminary phenotypic characterization of a novel CRISPR-based knockout mouse model targeting Col6a3 exon 3(Col6a3^(d3/d3)).Results:In this mouse model,Col6a3 mRNA is still expressed at a similar level to wild-type littermates,although the expected protein is undetectable by mass spectrometry.Histological analysis of Col6a3^(d3/d3)quadriceps revealed an abnormally high frequency of muscle cells with internally nucleated muscle cells,consistent with a myopathy phenotype.Interestingly,Col6a3^(d3/d3)mice are smaller in size,with their fat,muscle,and bone kept proportional compared to wild-type littermates.Conclusions:In summary,we performed the validation and preliminary phenotypic characterization of a novel Col6a3 knockout mouse model that could be further characterized and used to study COL6A3 biology and model collagen VI-associated diseases.展开更多
Proper medical treatment of a stroke victim relies on accurate and rapid differentiation between ischemic and hemorrhagic stroke,which in current practice is performed by computerized tomography(CT) or magnetic reso...Proper medical treatment of a stroke victim relies on accurate and rapid differentiation between ischemic and hemorrhagic stroke,which in current practice is performed by computerized tomography(CT) or magnetic resonance imaging(MRI) scans.A panel of micro RNAs could be an extremely useful clinical tool for distinguishing between hemorrhagic and ischemic stroke.This review has shown that blood miRNA profile can distinguish hemorrhagic from ischemic stroke in patients and in experimental animal models.It also seems likely they can differentiate between intracerebral and subarachnoid hemorrhage stroke.The miRNA profile in cerebrospinal fluid could be a useful diagnostic tool for subarachnoid hemorrhagic stroke.Decreased or increased miRNA levels may be needed either as prevention or treatment of stroke.Administration in vivo of miR-130 a inhibitor or miRNA mimic(miR-367,miR-223) in an intracerebral hemorrhage animal model improved neurological outcomes.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:82130003,81970158,82000180Zhejiang Provincial Key R&D Projects of Department of Science and Technology,Grant/Award Number:2021C03010Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004。
文摘Background:Cancer-targeted T-cell receptor T(TCR-T)cells hold promise in treating cancers such as hematological malignancies and breast cancers.However,approaches to obtain cancer-reactive TCR-T cells have been unsuccessful.Methods:Here,we developed a novel strategy to screen for cancer-targeted TCR-T cells using a special humanized mouse model with person-specific immune fingerprints.Rare steady-state circulating hematopoietic stem and progenitor cells were expanded via three-dimensional culture of steady-state peripheral blood mononuclear cells,and then the expanded cells were applied to establish humanized mice.The human immune system was evaluated according to the kinetics of dendritic cells,monocytes,T-cell subsets,and cytokines.To fully stimulate the immune response and to obtain B-cell precursor NAML-6-and triple-negative breast cancer MDA-MB-231-targeted TCR-T cells,we used the inactivated cells above to treat humanized mice twice a day every 7 days.Then,human T cells were processed for TCRβ-chain(TRB)sequencing analysis.After the repertoires had been constructed,features such as the fraction,diversity,and immune signature were investigated.Results:The results demonstrated an increase in diversity and clonality of T cells after treatment.The preferential usage and features of TRBV,TRBJ,and the V–J combination were also changed.The stress also induced highly clonal Science and Technology,Grant/Award Number:2021C03010;Zhejiang Provincial Natural Science Foundation of China,Grant/Award Numbers:LTGY24H080003,LY21H080004 expansion.Tumor burden and survival analysis demonstrated that stress induction could significantly inhibit the growth of subsequently transfused live tumor cells and prolong the survival of the humanized mice.Conclusions:We constructed a personalized humanized mouse model to screen cancer-targeted TCR-T pools.Our platform provides an effective source of cancer-targeted TCR-T cells and allows for the design of patient-specific engineered T cells.It therefore has the potential to greatly benefit cancer treatment.
文摘Background:Most mutations in the COL6A3 gene lead to collagen VI-related myopathies.This is due to a reduced expression or mislocalization of the COL6A3 protein.Therefore,studying the consequence of knocking out the Col6a3 gene in mouse models is relevant,but the Col6a3 mouse models reported so far do not entirely abolish COL6A3 protein expression.Methods:Here,we present the development,validation and preliminary phenotypic characterization of a novel CRISPR-based knockout mouse model targeting Col6a3 exon 3(Col6a3^(d3/d3)).Results:In this mouse model,Col6a3 mRNA is still expressed at a similar level to wild-type littermates,although the expected protein is undetectable by mass spectrometry.Histological analysis of Col6a3^(d3/d3)quadriceps revealed an abnormally high frequency of muscle cells with internally nucleated muscle cells,consistent with a myopathy phenotype.Interestingly,Col6a3^(d3/d3)mice are smaller in size,with their fat,muscle,and bone kept proportional compared to wild-type littermates.Conclusions:In summary,we performed the validation and preliminary phenotypic characterization of a novel Col6a3 knockout mouse model that could be further characterized and used to study COL6A3 biology and model collagen VI-associated diseases.
文摘Proper medical treatment of a stroke victim relies on accurate and rapid differentiation between ischemic and hemorrhagic stroke,which in current practice is performed by computerized tomography(CT) or magnetic resonance imaging(MRI) scans.A panel of micro RNAs could be an extremely useful clinical tool for distinguishing between hemorrhagic and ischemic stroke.This review has shown that blood miRNA profile can distinguish hemorrhagic from ischemic stroke in patients and in experimental animal models.It also seems likely they can differentiate between intracerebral and subarachnoid hemorrhage stroke.The miRNA profile in cerebrospinal fluid could be a useful diagnostic tool for subarachnoid hemorrhagic stroke.Decreased or increased miRNA levels may be needed either as prevention or treatment of stroke.Administration in vivo of miR-130 a inhibitor or miRNA mimic(miR-367,miR-223) in an intracerebral hemorrhage animal model improved neurological outcomes.