期刊文献+
共找到690篇文章
< 1 2 35 >
每页显示 20 50 100
CO_(2)-EOR microscopic mechanism under injection-production coupling technology in low-permeability reservoirs
1
作者 Zheng Chen Yu-Liang Su +3 位作者 Lei Li Yong-Mao Hao Wen-Dong Wang Chui-Xian Kong 《Petroleum Science》 2025年第2期739-755,共17页
Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation ... Injection-production coupling(IPC) technology holds substantial potential for boosting oil recovery and enhancing economic efficiency.Despite this potential,discussion on gas injection coupling,especially in relation to microscopic mechanisms,remains relatively sparse.This study utilizes microscopic visualization experiments to investigate the mechanisms of residual oil mobilization under various IPC scenarios,complemented by mechanical analysis at different stages.The research quantitatively assesses the degree of microscopic oil recovery and the distribution of residual oil across different injection-production methods.Findings reveal that during the initial phase of continuous gas injection(CGI),the process closely mimics miscible displacement,gradually transitioning to immiscible displacement as CO_(2)extraction progresses.Compared to CGI,the asynchronous injection-production(AIP) method improved the microscopic oil recovery rate by 6.58%.This enhancement is mainly attributed to significant variations in the pressure field in the AIP method,which facilitate the mobilization of columnar and porous re sidual oil.Furthermo re,the synchronous cycle injection(SCI) method increased microscopic oil recovery by 13.77% and 7.19% compared to CGI and AIP,respectively.In the SCI method,membrane oil displays filame ntary and Karman vo rtex street flow patterns.The dissolved and expanded crude oil te nds to accumulate and grow at the oil-solid interface due to adhesive forces,thereby reducing migration resistance.The study findings provide a theoretical foundation for improving oil recovery in lowpermeability reservoirs. 展开更多
关键词 Low-permeability reservoirs Injection-production coupling Microscopic experimental simulation technology CO_(2)-EOR Mechanical analysis
原文传递
Numerical simulation study on the mold strength of magnetic mold casting based on a coupled electromagnetic-structural method
2
作者 Wei-li Peng Jian-hua Zhao +1 位作者 Cheng Gu Ya-jun Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期577-587,共11页
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ... The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds. 展开更多
关键词 magnetic mold casting coupled electromagnetic-structural method numerical simulation stress analysis
在线阅读 下载PDF
Thermo-elasto-hydrodynamic analysis of a specific multi-layer gas foil thrust bearing under thermal-fluid–solid coupling 被引量:3
3
作者 Qihong GAO Wenjing SUN Jingzhou ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期231-246,共16页
Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific mult... Gas foil bearing faces severe and complex thermal-fluid–solid coupling issues when in ultra-high speed and miniaturized impeller machineries.In this study,a Thermo-Elasto-Hydrodynamic(TEHD)analysis of a specific multi-layer gas foil thrust bearing on the continuous loading process within a steady rotational speed is numerically investigated by a three-dimensional thermal-fluid–solid coupling method.Results indicate that the multi-layer foil exhibits nonlinear overall stiffness,with the thrust bottom foil serving as the primary elastic deformation structure,while the thrust top foil maintains a well-defined aerodynamic shape during a loading process,which helps reduce frictional damage and achieve an adequate loading capacity.For low loads,the fluctuation of the gas film is extremely sensitive,and it weakens dramatically as the load increases.The viscous heating and friction torque exhibit a linear relationship with an increasing bearing load after a rapid growth.Depending on the exact stacking sequence and contact position of the multi-layer gas foil,the overlapping configuration allows for efficient transfer of viscous-shearing heat accumulated at the smallest air film through thermal conduction while providing elastic support.Due to the strong inhomogeneity of the viscous heat under varying loads,the temperature distribution on the top foil surface shows pronounced variations,while the difference between the peak and average temperatures of the thrust plate and top foil surfaces widens substantially with an increasing load. 展开更多
关键词 Gas foil thrust bearing Thermo-elastohydrodynamic analysis Thermal-fluid–solid coupling simulation Adaptive deformation Structural stiffness
原文传递
Numerical methods for the magneto-mechanical coupling analysis of invessel components in Tokamak devices 被引量:1
4
作者 Xudong Li Shejuan Xie +1 位作者 Cuixiang Pei Zhenmao Chen 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第3期173-179,共7页
Magneto-mechanical coupling vibration arises in the in-vessel components of Tokamak devices especially during the plasma disruption. Strong electromagnetic forces cause the structures to vibrate while the motion in tu... Magneto-mechanical coupling vibration arises in the in-vessel components of Tokamak devices especially during the plasma disruption. Strong electromagnetic forces cause the structures to vibrate while the motion in turn changes the distribution of the electromagnetic field. To ensure the Tokamak devices operating in a designed state, numerical analysis on the coupling vibration is of great importance. This paper introduces two numerical methods for the magneto-mechanical coupling problems. The coupling term of velocity and magnetic flux density is manipulated in both Eulerian and Lagrangian description, which brings much simplification in numerical implementation. Corresponding numerical codes have been developed and applied to the dynamic simulation of a test module in J-TEXT and the vacuum vessel of HL-2M during plasma disruptions. The results reveal the evident influence of the magnetic stiffness and magnetic damping effects on the vibration behavior of the in-vessel structures. Finally, to deal with the halo current injection problem, a numerical scheme is described and validated which can simulate the distribution of the halo current without complicated manipulations. 展开更多
关键词 Magneto-mechanical coupling analysis In-vessel component Plasma DISRUPTION HALO current NUMERICAL simulation
在线阅读 下载PDF
Impact Analysis of Fluid-structure Coupling Embedded Weapon Bay
5
作者 FENG Ruoqi CHEN Xuemei +1 位作者 PU Keqiang XIONG Qinlin 《International Journal of Plant Engineering and Management》 2021年第2期89-105,共17页
The coupling behavior of the imbedded weapon store occurring between the local unsteady flow field round the store and the structure response on the processing of opening its bay-door is simulated by using numerical m... The coupling behavior of the imbedded weapon store occurring between the local unsteady flow field round the store and the structure response on the processing of opening its bay-door is simulated by using numerical method based on computational fluid mechanics(CFD).The transient aerodynamic behaviors when opening door under various flight altitudes and the corresponding structure deformation evolution in the unsteady flow fields are analyzed respectively and presented.The rules of aircraft attitude parameters′impacting to the responses of structure and the bay-door′s opening process are obtained by comparing with the analysis results.These rules can be applied to the structure design of bay-door and route specification of missile when disengaged and launched from within store. 展开更多
关键词 embedded weapon store CFD numerical simulation unsteady air flow and structure coupling aerodynamic characteristics analysis structure behavior analysis
在线阅读 下载PDF
COUPLED SIMULATION OF 3D ELECTRO-MAGNETO-FLOW FIELD IN HALL-HEROULT CELLS USING FINITE ELEMENT METHOD 被引量:10
6
作者 J. Li W. Liu +2 位作者 Y.Q. Lai Q.Y. Li Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期105-116,共12页
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the... Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad. 展开更多
关键词 coupled simulation electromagnetic field flow field aluminum reduction cell finite element analysis
在线阅读 下载PDF
Thermal-electrical Coupled Analysis and Experimental Investigation on Spark Plasma Sintering of SiC Ceramics 被引量:2
7
作者 骆俊廷 SUN Yan +1 位作者 ZHANG Chunxiang ZHAO Zhiyong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第6期1120-1124,共5页
Finite element simulations were conducted to study the mechanism of spark plasma sintering. The spark plasma sintering of SiC ceramics was simulated by the Marc software based on the load current curve and temperature... Finite element simulations were conducted to study the mechanism of spark plasma sintering. The spark plasma sintering of SiC ceramics was simulated by the Marc software based on the load current curve and temperature-time curve deserved by SPS experiment. The concept of equivalent radiation coefficient was presented and applied during the simulation. The temperature distribution regularity of SiC ceramics sintered by SPS technology was got by thermal-electrical coupled finite element simulation. The experimental results show that by thermal-electrical coupled finite element analysis, the temperature rising and distribution regularity of nonconductive material can be preferable forecasted in the sintering process of SPS. In the initial stage of the heat preservation, the temperature of the central part of the sample has achieved sintering temperature, but now, the temperature of the sample is not uniform. The temperature for each part of the die is also quite different and the sample temperature in the center is higher than that in the edge. In the end of heat preservation, the central temperature of the sample is 50 ℃higher than the required sintering temperature, and the temperature gap for each part of the die decreases gradually. 展开更多
关键词 SIC spark plasma sintering thermal-electrical coupled analysis finite element simulation
原文传递
Experimental and simulation studies on similitude design method for shock responses of beam-plate coupled structure 被引量:1
8
作者 Lei LI Zhong LUO +3 位作者 Fengxia HE Jilai ZHOU HuiMA HuiLI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期917-930,共14页
The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock respons... The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock responses of coupled structures is rarely incorporated in open studies. In this paper, scaling laws are derived for the shock responses and spectra of coupled structures. In the presented scaling laws, the geometric distortion and energy loss are considered. The ability of the proposed scaling laws is demonstrated in the simulation and experimental cases. In both cases, the similitude prediction for the prototype's time-domain waveform and spectrum is conducted with the scaled model and scaling laws. The simulation and experimental cases indicate that the predicted shock responses and spectra agree well with those of the prototype, which verifies the proposed scaling laws for predicting shock responses. 展开更多
关键词 partial similitude scaling law shock response coupled structure virtual mode synthesis simulation(VMSS) statistical energy analysis(SEA)
在线阅读 下载PDF
Design and Kinematics Analysis of Support Structure for Multi-Configuration Rigid-Flexible Coupled Modular Deployable Antenna 被引量:2
9
作者 TIAN Dake FAN Xiaodong +3 位作者 JIN Lu GUO Zhenwei GAO Haiming CHEN Hanting 《Aerospace China》 2021年第3期46-53,共8页
In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and th... In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and the industrial application of Bei Dou,a deployable antenna structure composed of hexagonal prism and pentagonal prism modules is proposed.Firstly,the arrangement and combination rules of pentagonal prism and hexagonal prism modules on the plane were analyzed.Secondly,the spatial geometric model of the deployable antenna composed of pentagonal prism and hexagonal prism modules was established.The influence of module size on the antenna shape was then analyzed,and the kinematic model of the deployable antenna established by coordinate transformation.Finally,the above model was verified using MATLAB software.The simulation results showed that the proposed modular deployable antenna structure can realize accurate connection between modules,complete the expected deployment and folding functional requirements.It is hoped that this research can provide reference for the basic research and engineering application of deployable antennas in China. 展开更多
关键词 space deployable antenna support structure rigid flexible coupling kinematics analysis numerical simulation
在线阅读 下载PDF
Vibration harvesting process of olive trees based on response surface methodology and rigid-flexible coupling simulation
10
作者 Kehua Dang Zijie Niu +5 位作者 Haotian Mu Weike Lan Xu Zhang Di Xin Jun Zhang Yongjie Cui 《International Journal of Agricultural and Biological Engineering》 2025年第3期25-36,共12页
A trunk-vibrating screen is widely used in olive harvesting machinery.Because of the irregularity of fruit recovery efficiency,the recovery efficiency fluctuates greatly.Vibration harvesting parameters are important f... A trunk-vibrating screen is widely used in olive harvesting machinery.Because of the irregularity of fruit recovery efficiency,the recovery efficiency fluctuates greatly.Vibration harvesting parameters are important factors affecting the percentage of olive harvest.Therefore,the study of vibration picking parameters is of great significance for olive harvest.Vibration parameters,governed by tree morphological parameters,strongly influence the efficiency of vibration harvesting.In this study,a combination of response surface simulation and harvesting experiments was used to investigate the relationship between morphological and vibration harvesting parameters in“three open-center shape”olive trees.First,force analysis and experimental measurements were performed on the olive fruit,and the Box-Behnken design was used to obtain the vibration parameters through finite element simulation and to establish the response surface model of the parameters(main trunk diameter,main trunk height,main branch angles A and B)and the vibration parameters(vibration frequency and vibration force)of the“three open-center-shape”olive trees.In addition,the mapping relationship between tree shape parameters and vibration parameters was obtained.The results show that the 90%quantile of the acceleration of abscission of olives is 1113.35 m/s2;the average correlation coefficient between the simulation and the experiment results was 0.73,and the simulation was a good representation of the experimental results.When the tree shape was“three open-center”,the trunk diameter and height were related to the vibration harvesting parameters;the average harvesting efficiency of olives was 91.22%,and the resonance frequency of the monitoring points was similar to that of the simulation results.This study provides a reference for the design of vibration harvesting equipment and fruit tree shaping. 展开更多
关键词 OLIVE three open-center shape vibration harvesting modal analysis rigid-flexible coupling simulation acceleration response
原文传递
Constitutive Relationship of New Steel 33Mn2V and Its Application in Piercing Process by FEM Simulation 被引量:5
11
作者 LU Lu WANG Fu-zhong +2 位作者 WANG Zhao-xu ZHU Guang-ya ZHANG Xing-xiang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第7期47-52,共6页
Based on test data from the hot forge experiments on Gleeble 1500, a Kumar type constitutive equation for 33Mn2V steel is established. Applying this constitutive equation in commercial FEM software of MSC/SuperForm 20... Based on test data from the hot forge experiments on Gleeble 1500, a Kumar type constitutive equation for 33Mn2V steel is established. Applying this constitutive equation in commercial FEM software of MSC/SuperForm 2005, the piercing process of 33Mn2V steel in Mannesmann mill is then simulated. The modeling results visualized the dynamic evolution of equivalent stress, especially inside the workpieee. It is shown that the non-uniform distribu- tion of stress on the internal and external surface of the workpiece is a distinct characteristic of processing tube pierc- ing. The numerical model was verified by comparing the values of calculated force parameters of the piercing process with those measured in laboratory eonditions. And it shows that the Kumar-type constitutive relationship meets the practical needs. 展开更多
关键词 33 Mn2 V constitutive equation tube piercing process thermo-mechanieal coupling simulation FEM analysis
原文传递
Probabilistic analysis of embankment slope stability in frozen ground regions based on random finite element method 被引量:4
12
作者 Xi Chen JianKun Liu +1 位作者 Nan Xie HuiJing Sun 《Research in Cold and Arid Regions》 CSCD 2015年第4期354-364,共11页
Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafros... Prediction on the coupled thermal-hydraulic fields of embankment and cutting slopes is essential to the assessment on evolution of melting zone and natural permafrost table, which is usually a key factor for permafrost embankment design in frozen ground regions. The prediction may be further complicated due to the inherent uncertainties of material properties. Hence, stochastic analyses should be conducted. Firstly, Karhunen-Loeve expansion is applied to attain the random fields for hydraulic and thermal conductions. Next, the mixed-form modified Richards equation for mass transfer (i.e., mass equation) and the heat transport equation for heat transient flow in a variably saturated frozen soil are combined into one equation with temperature unknown. Furthermore, the finite element formulation for the coupled thermal-hydraulic fields is derived. Based on the random fields, the stochastic finite element analyses on stability of embankment are carried out. Numerical results show that stochastic analyses of embankment stability may provide a more rational picture for the distribution of factors of safety (FOS), which is definitely useful for embankment design in frozen ground regions. 展开更多
关键词 frozen ground high-speed railway EMBANKMENT slope stability coupled thermal-hydraulic analysis randomfinite element method Monte-Carlo simulation climate change
在线阅读 下载PDF
Water and heat transport in hilly red soil of southern China:II. Modeling and simulation 被引量:2
13
作者 吕军 黄志珍 韩晓非 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第5期338-345,共8页
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Vi... Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, KS, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution. 展开更多
关键词 Red soil coupled transfer of soil water and heat simulation model VALIDATION Sensitivity analysis
在线阅读 下载PDF
Research on alternating magnetic treatment to diamond segments by experiment and numerical simulation
14
作者 Fu Yuming~1 Yu Kun~(2,1) Yin Jing~1 (1.Mechanical Engineering College,Yanshan University,Qinhuangdao 066004,China) (2.Eectrical and Mechanical Engineering Department,Qinhuangdao Institute of Technology,Beidaihe 066110,China) 《金刚石与磨料磨具工程》 CAS 北大核心 2008年第S1期161-164,167,共5页
The heated test pieces of diamond segments were treated by alternating magnetic field,the influences of magnetic treatment on microstructure densification of diamond segments were studied through metallurgical structu... The heated test pieces of diamond segments were treated by alternating magnetic field,the influences of magnetic treatment on microstructure densification of diamond segments were studied through metallurgical structure analysis.The experiment results indicated that,the densification of diamond segments was further improved after magnetized.The alternating magnetic force distributions in the diamond segments were calculated by numerical simulation according to the coupled field theory.In alternating magnetic field,a prodigious swirl current field appeared in the component.The magnetic vibrating due to alternating magnetic force was obvious,which was in favor of microcosmic structure compacter.The numerical analysis results provided direct evidences for that the alternating magnetic treatment can act as an effective technique to improve the microstructure densification of diamond segments. 展开更多
关键词 MAGNETIC treatment DIAMOND SEGMENT microstructure NUMERICAL simulation couplED analysis
在线阅读 下载PDF
An Integrated Structural Strength Analysis Method for Spar Type Floating Wind Turbine
15
作者 胡志强 刘毅 王晋 《China Ocean Engineering》 SCIE EI CSCD 2016年第2期217-230,共14页
An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.Th... An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper,and technical issues related to turbine structure modeling and stress combination are also addressed.The NREL-5MW "Hywind" Spar type wind turbine is adopted as study object.Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool,FAST,on the purpose of obtaining the dynamic characteristics of the floating wind turbine,and determining parameters for design load cases of finite element calculation.Then design load cases are identified,and finite element analyses are performed for these design load cases.The structural stresses due to wave-induced loads and wind-induced loads are calculated,and then combined to assess the structural strength of the floating wind turbine.The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated. 展开更多
关键词 floating wind turbine structural strength analysis method dynamic coupled simulation finite element analysis
在线阅读 下载PDF
地下水渗流富水砂层竖井冻结温度场时空演化规律及敏感性分析 被引量:1
16
作者 荣传新 屠卓 +1 位作者 龙伟 张润泽 《隧道建设(中英文)》 北大核心 2025年第2期268-283,共16页
为研究冻结竖井施工中地下水渗流对冻结温度场时空演化规律的影响,以淮北煤田临涣矿区袁店二矿为工程背景,根据现场实测数据及水热耦合数值模拟计算结果分析现场砂土渗透地层温度场的时空演化规律;通过控制变量法,研究流速、冻结管间距... 为研究冻结竖井施工中地下水渗流对冻结温度场时空演化规律的影响,以淮北煤田临涣矿区袁店二矿为工程背景,根据现场实测数据及水热耦合数值模拟计算结果分析现场砂土渗透地层温度场的时空演化规律;通过控制变量法,研究流速、冻结管间距、冻结管直径及盐水温度对温度场的影响;结合灰色关联度理论对冻结温度场进行敏感性分析。研究结果表明:1)冻结竖井施工中,开挖及筑壁带来的施工热扰动对井帮处冻结壁的形成有削弱作用,地下水渗流使得冻结管布置圈径外侧上下游温度相差2~4℃。2)通过数值计算结果与现场实测数据的对比验证,证实将SFCC(soil freezing characteristic curve)离散试验数据公式化并嵌入数值计算软件中,能够可靠地模拟埋深135 m富水砂层的温度场演化过程。3)富水砂层在冻结30 d时冻结壁交圈,冻结100 d时冻结壁有效厚度可达5 m以上,且渗流方向上的冻结温度场分布和上下游冻结壁温度变化具有明显差异。4)单因素作用下,冻结管直径与盐水温度的变化对上游冻结壁厚度及非对称系数的影响较小,变化幅度均不超过10%;而冻结管间距的改变对交圈时间影响显著,变化幅度超过60%。5)流速小于5 m/d时,交圈时间对盐水温度最为敏感,上游冻结壁厚度和冻结壁非对称系数对冻结管间距最为敏感;流速大于5 m/d时,交圈时间和冻结壁非对称系数受流速影响最为显著,上游冻结壁厚度受冻结管间距影响最为显著。 展开更多
关键词 竖井 水热耦合 冻结温度场 数值模拟 地下水渗流 敏感性分析
在线阅读 下载PDF
涡喷发动机全三维流-热-固耦合建模方法
17
作者 魏杰 温孟阳 +2 位作者 杨合理 王旭 郑新前 《航空动力学报》 北大核心 2025年第2期72-80,共9页
建立了单通道流-热和全通道热-固的耦合建模方法,对某涡喷发动机进行了全三维流-热-固耦合分析,并与不考虑耦合的方法进行了对比,在温度、应力和变形等方面均有较大差异。流-热耦合的压气机转子叶片温度较不耦合偏低15 K,三级扩压器温... 建立了单通道流-热和全通道热-固的耦合建模方法,对某涡喷发动机进行了全三维流-热-固耦合分析,并与不考虑耦合的方法进行了对比,在温度、应力和变形等方面均有较大差异。流-热耦合的压气机转子叶片温度较不耦合偏低15 K,三级扩压器温度较不耦合偏低10~20 K。热-固耦合的压气机转子最大等效应力比不耦合小31 MPa(4.7%),径向变形比不耦合大0.02 mm(11.1%)。流-热-固耦合预测的设计点涡轮叶尖间隙变化0.54 mm。该方法实现了整机温度场、应力场、变形场的分析,综合评估了部件的强度和变形,为部件优化提供了数据支撑。 展开更多
关键词 涡喷发动机 全三维数值仿真 流-热-固耦合 间隙预测 结构分析
原文传递
钢板-纤维增强混凝土组合双连梁抗震性能有限元分析
18
作者 田建勃 焦崧 +4 位作者 陈田宁 张书林 王梦梦 张俊发 杨海增 《自然灾害学报》 北大核心 2025年第1期190-202,共13页
连梁作为高层建筑结构体系中重要的耗能构件,要求其具有较强的抗震性能。双连梁通过提高跨高比,降低连梁内力,在地震作用下表现出良好的延性。为此,在采用双连梁的基础上考虑基体材料与钢板的影响,提出钢板-纤维增强混凝土组合双连梁,... 连梁作为高层建筑结构体系中重要的耗能构件,要求其具有较强的抗震性能。双连梁通过提高跨高比,降低连梁内力,在地震作用下表现出良好的延性。为此,在采用双连梁的基础上考虑基体材料与钢板的影响,提出钢板-纤维增强混凝土组合双连梁,并使用有限元软件对试验试件进行数值模拟,对其混凝土裂缝发展、钢板和钢筋应力、钢板沿梁跨的内力分布进行探究分析。并对钢板-纤维增强混凝土组合双连梁的跨高比、含钢率、配箍率、纵筋配筋率、纤维增强混凝土强度和连梁中间开缝间距等进行参数分析。结果表明:纵筋配筋率、含钢率、纤维增强混凝土强度和跨高比对钢板-纤维增强混凝土组合双连梁的抗震性能影响相对较大;纤维增强混凝土的使用有利于钢板性能的充分发挥;双连梁左、右梁内的受力基本相同,双连梁可以近似按左、右梁转角刚度相同进行等效。 展开更多
关键词 钢板-混凝土组合双连梁 纤维增强混凝土 抗震性能 有限元模拟 参数分析
原文传递
无气囊式空气包双向流固耦合计算与模态分析
19
作者 胡启国 赵胜东 +1 位作者 周小明 曾兴昌 《机械设计》 北大核心 2025年第3期21-28,共8页
空气包作为石油钻井过程中最重要的压力脉动缓冲设备,其缓冲效果对钻井泵能否稳定工作有着巨大的影响。文中以QDP-2200钻井泵使用的无气囊式空气包为例,基于计算流体动力学的双向流固耦合方法,研究无气囊式空气包的压力脉动情况和流体... 空气包作为石油钻井过程中最重要的压力脉动缓冲设备,其缓冲效果对钻井泵能否稳定工作有着巨大的影响。文中以QDP-2200钻井泵使用的无气囊式空气包为例,基于计算流体动力学的双向流固耦合方法,研究无气囊式空气包的压力脉动情况和流体速度分布情况,同时对比无预应力和有流固耦合预应力情况下无气囊式空气包的模态分析结果。研究结果表明:该空气包对于压力脉动的衰减较为显著,衰减率为65%,最大的流速冲击发生在内插管由大变小的管口区域;无气囊式空气包结构内部最大等效应力小于材料的屈服强度,最大的变形值为1.211×10^(-3) mm;在流固耦合作用下空气包的第5,6阶振型最大值有所增加,但总体振型最大值变化较小。 展开更多
关键词 数值模拟 双向流固耦合 空气包 模态分析
原文传递
主蒸汽管道电动闸阀安装段应力分析及优化
20
作者 占刚 夏红伟 +2 位作者 张凤安 鲍永生 郭勤 《电力系统装备》 2025年第8期117-119,共3页
针对火电厂高温管道设计领域普遍存在的电动闸阀垂直安装管段三维应力表征缺失问题,文章基于多物理场耦合分析方法,根据管道设计资料,建立研究管段的三维有限元模型。通过系统考虑稳态内压载荷、执行机构自重引发的悬臂弯矩效应及均匀... 针对火电厂高温管道设计领域普遍存在的电动闸阀垂直安装管段三维应力表征缺失问题,文章基于多物理场耦合分析方法,根据管道设计资料,建立研究管段的三维有限元模型。通过系统考虑稳态内压载荷、执行机构自重引发的悬臂弯矩效应及均匀温度场作用,采用热–力耦合分析方法,得到主蒸汽管道安装电动闸阀前后以及采取额外支撑措施的详细应力分布情况。 展开更多
关键词 高压蒸汽管道 有限元 应力分析 耦合仿真
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部