Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccu...Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.展开更多
The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operatin...The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.展开更多
The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charg...The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.展开更多
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype...This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.展开更多
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in...Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.展开更多
Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoti...Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.展开更多
Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision u...Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value.展开更多
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o...Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.展开更多
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis...The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.展开更多
Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, curr...Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.展开更多
The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on e...The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl...Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.展开更多
In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide ef...In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide efficient and privacypreserving collaborative learning.However,in Io V environment,federated learning faces the challenges introduced by high mobility of vehicles and nonIndependently Identically Distribution(non-IID)of data.High mobility causes FL clients quit and the communication offline.The non-IID data leads to slow and unstable convergence of global model and single global model's weak adaptability to clients with different localization characteristics.Accordingly,this paper proposes a personalized aggregation strategy for hierarchical Federated Learning in Io V environment,including Fed SA(Special Asynchronous Federated Learning with Self-adaptive Aggregation)for low-level FL between a Road Side Unit(RSU)and the vehicles within its coverage,and Fed Att(Federated Learning with Attention Mechanism)for high-level FL between a cloud server and multiple RSUs.Agents self-adaptively obtain model aggregation weight based on Advantage Actor-Critic(A2C)algorithm.Experiments show the proposed strategy encourages vehicles to participate in global aggregation,and outperforms existing methods in training performance.展开更多
Aiming at the problem of increasing the peak-to-valley difference of grid load and the rising cost of user charging caused by the disorderly charging of large-scale electric vehicles,this paper proposes a coordinated ...Aiming at the problem of increasing the peak-to-valley difference of grid load and the rising cost of user charging caused by the disorderly charging of large-scale electric vehicles,this paper proposes a coordinated charging scheduling strategy for multiple types of electric vehicles based on the degree of urgency of vehicle use.First,considering the range loss characteristics,dynamic time-sharing tariff mechanism,and user incentive policy in the lowtemperature environment of northern winter,a differentiated charging model is constructed for four types of vehicles:family cars,official cars,buses,and cabs.Then,we innovatively introduce the urgency parameter of charging demand for multiple types of vehicles and dynamically divide the emergency and non-emergency charging modes according to the difference between the regular charging capacity and the user’s minimum power demand.When the conventional charging capacity is less than the minimum power demand of the vehicle within the specified time,it is the emergency vehicle demand,and this type of vehicle is immediately charged in fast charging mode after connecting to the grid.On the contrary,it is a non-emergency demand,and the vehicle is connected to the grid to choose the appropriate time to charge in conventional charging mode.Finally,by optimizing the objective function to minimize the peakto-valley difference between the grid and the vehicle owner’s charging cost,and designing the charging continuity constraints to avoid battery damage,it ensures that the vehicle is efficiently dispatched under the premise of meeting the minimum power demand.Simulation results show that the proposed charging strategy can reduce the charging cost of vehicle owners by 26.33%,reduce the peak-to-valley difference rate of the grid by 29.8%,and significantly alleviate the congestion problem during peak load hours,compared with the disordered charging mode,while ensuring that the electric vehicles are not overcharged and meet the electricity demand of vehicle owners.This paper solves the problems of the existing research on the singularity of vehicle models and the lack of environmental adaptability and provides both economic and practical solutions for the cooperative optimization of electric vehicles and power grids in multiple scenarios.展开更多
With increasingly serious environmental pollution and the energy crisis,fuel cell hybrid electric vehicles have been considered as an ideal alternative to traditional hybrid electric vehicles.Nevertheless,the total co...With increasingly serious environmental pollution and the energy crisis,fuel cell hybrid electric vehicles have been considered as an ideal alternative to traditional hybrid electric vehicles.Nevertheless,the total costs of fuel cell systems are still too high,thus limiting the further development of fuel cell hybrid electric vehicles.This paper presents an energy management strategy(EMS)based on deep reinforcement learning for the energy management of fuel cell hybrid electric vehicles.The energy management model of a fuel cell hybrid electric bus and its main components are established.Considering the power response characteristics of the fuel cell system,the power change rate of the fuel cell system is reasonably limited and introduced as action variables into the network of Double Deep Q-Learning(DDQL),and a novel DDQL-based EMS is developed for the fuel cell hybrid electric bus.Subsequently,a comparative test is conducted with the DP-based and the Rule-based EMS to analyze the performance of the DDQL-based EMS.The results indicate that the proposed EMS achieves good fuel economy performance,with an improvement of 15.4%compared to the Rule-based EMS under the training scenarios.In terms of generalization performance,the proposed EMS also achieves good fuel economy performance,which improves by 13.3%compared to the Rule-based energy management strategy under the testing scenario.展开更多
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ...As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant.展开更多
The emergence of connected and automated vehicles(CAV)indicates improved traffic mobility in future traffic transportation systems.This study addresses the research gap in macroscopic traffic modeling of mixed traffic...The emergence of connected and automated vehicles(CAV)indicates improved traffic mobility in future traffic transportation systems.This study addresses the research gap in macroscopic traffic modeling of mixed traffic networks where CAV and human-driven vehicles coexist.CAV behavior is explicitly included in the proposed traffic network model,and the vehicle number non-conservation problem is overcome by describing the approaching and departure vehicle number in discrete time.The proposed model is verified in typical CAV cooperation scenarios.The performance of CAV coordination is analyzed in road,intersection and network scenario.Total travel time of the vehicles in the network is proved to be reduced when coordination is applied.Simulation results validate the accuracy of the proposed model and the effectiveness of the proposed algorithm.展开更多
Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal...Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal tools for reconnaissance and rescue missions.1 However,the operation of FMAVs relies on coordinating multiple forces with different scaling effects,posing challenges to miniaturization design.展开更多
Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex ro...Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex road traffic environment of smart vehicles and other vehicles frequently experiences conflicting start and stop motion.The fine-grained scheduling of autonomous vehicles(AVs)at non-signalized intersections,which is a promising technique for exploring optimal driving paths for both assisted driving nowadays and driverless cars in the near future,has attracted significant attention owing to its high potential for improving road safety and traffic efficiency.Fine-grained scheduling primarily focuses on signalized intersection scenarios,as applying it directly to non-signalized intersections is challenging because each AV can move freely without traffic signal control.This may cause frequent driving collisions and low road traffic efficiency.Therefore,this study proposes a novel algorithm to address this issue.Our work focuses on the fine-grained scheduling of automated vehicles at non-signal intersections via dual reinforced training(FS-DRL).For FS-DRL,we first use a grid to describe the non-signalized intersection and propose a convolutional neural network(CNN)-based fast decision model that can rapidly yield a coarse-grained scheduling decision for each AV in a distributed manner.We then load these coarse-grained scheduling decisions onto a deep Q-learning network(DQN)for further evaluation.We use an adaptive learning rate to maximize the reward function and employ parameterεto tradeoff the fast speed of coarse-grained scheduling in the CNN and optimal fine-grained scheduling in the DQN.In addition,we prove that using this adaptive learning rate leads to a converged loss rate with an extremely small number of training loops.The simulation results show that compared with Dijkstra,RNN,and ant colony-based scheduling,FS-DRL yields a high accuracy of 96.5%on the sample,with improved performance of approximately 61.54%-85.37%in terms of the average conflict and traffic efficiency.展开更多
基金supported by the National Key Research and the Development Program of China(2022YFC3803700)the National Natural Science Foundation of China(52202391 and U20A20155).
文摘Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.
基金supported by Southern Marine Science and Engineering Guangdong Laboratory Grant No.SML2023SP229。
文摘The cross-domain capabilities of aerial-aquatic vehicles(AAVs)hold significant potential for future airsea integrated combat operations.However,the failure rate of AAVs is higher than that of unmanned systems operating in a single medium.To ensure the reliable and stable completion of tasks by AAVs,this paper proposes a tiltable quadcopter AAV to mitigate the potential issue of rotor failure,which can lead to high-speed spinning or damage during cross-media transitions.Experimental validation demonstrates that this tiltable quadcopter AAV can transform into a dual-rotor or triple-rotor configuration after losing one or two rotors,allowing it to perform cross-domain movements with enhanced stability and maintain task completion.This enhancement significantly improves its fault tolerance and task reliability.
基金supported by Jiangsu Provincial Science and Technology Project,grant number J2023124.Jing Guo received this grant,the URLs of sponsors’website is https://kxjst.jiangsu.gov.cn/(accessed on 06 June 2024).
文摘The rapid proliferation of electric vehicle(EV)charging infrastructure introduces critical cybersecurity vulnerabilities to power grids system.This study presents an innovative anomaly detection framework for EV charging stations,addressing the unique challenges posed by third-party aggregation platforms.Our approach integrates node equations-based on the parameter identification with a novel deep learning model,xDeepCIN,to detect abnormal data reporting indicative of aggregation attacks.We employ a graph-theoretic approach to model EV charging networks and utilize Markov Chain Monte Carlo techniques for accurate parameter estimation.The xDeepCIN model,incorporating a Compressed Interaction Network,has the ability to capture complex feature interactions in sparse,high-dimensional charging data.Experimental results on both proprietary and public datasets demonstrate significant improvements in anomaly detection performance,with F1-scores increasing by up to 32.3%for specific anomaly types compared to traditional methods,such as wide&deep and DeepFM(Factorization-Machine).Our framework exhibits robust scalability,effectively handling networks ranging from 8 to 85 charging points.Furthermore,we achieve real-time monitoring capabilities,with parameter identification completing within seconds for networks up to 1000 nodes.This research contributes to enhancing the security and reliability of renewable energy systems against evolving cyber threats,offering a comprehensive solution for safeguarding the rapidly expanding EV charging infrastructure.
基金supported by the National Natural Science Foundation of China(12072090).
文摘This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller.
基金supported by a Korean Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure and Transport(grant no.RS-2023-00239464).
文摘Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0102)the China Scholarship Council Program(202406190114)。
文摘Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.
基金co-supported by the National Natural Science Foundation of China(No.62103432)the China Postdoctoral Science Foundation(No.284881)the Young Talent fund of University Association for Science and Technology in Shaanxi,China(No.20210108)。
文摘Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value.
基金funded by the“Research and Application Project of Collaborative Optimization Control Technology for Distribution Station Area for High Proportion Distributed PV Consumption(4000-202318079A-1-1-ZN)”of the Headquarters of the State Grid Corporation.
文摘Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem.
基金funded by the State Grid Corporation Science and Technology Project(5108-202218280A-2-391-XG).
文摘The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network.
文摘Integrating autonomous vehicles (AVs) and autonomous parking spaces (APS) marks a transformative development in urban mobility and sustainability. This paper reflects on these technologies’ historical evolution, current interdependence, and future potential through the lens of environmental, social, and economic sustainability. Historically, parking systems evolved from manual designs to automated processes yet remained focused on convenience rather than sustainability. Presently, advancements in smart infrastructure and vehicle-to-infrastructure (V2I) communication have enabled AVs and APS to operate as a cohesive system, optimizing space, energy, and transportation efficiency. Looking ahead, the seamless integration of AVs and APS into broader smart city ecosystems promises to redefine urban landscapes by repurposing traditional parking infrastructure into multifunctional spaces and supporting renewable energy initiatives. These technologies align with global sustainability goals by mitigating emissions, reducing urban sprawl, and fostering adaptive land uses. This reflection highlights the need for collaborative efforts among stakeholders to address regulatory and technological challenges, ensuring the equitable and efficient deployment of AVs and APS for smarter, greener cities.
文摘The usage of electric vehicles holds a crucial role in lowering the diminishing of the ozone layer because electric vehicles are not dependent on fossil fuels.With more research,evaluation,and its characteristics on electric vehicles,the infrastructure of charging points,production of electric vehicles,and network modelling,this paper provides a comprehensive overview of electric vehicles,and hybrid vehicles,including an analysis of their market growth,as well as different types of optimization used in the current scenario.In developing countries like India,the biggest barrier is their unfulfilled facility over the charging.Without renewable energy sources,vehicle-to-grid technology facilitates the enhancement of additional power requirements.The mobility factor has been considered an important and special characteristic of electric vehicles.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
文摘Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.
基金supported by the National Natural Science Foundation of China under Grant 61931005Beijing Natural Science Foundation under Grant L202018the Key Laboratory of Internet of Vehicle Technical Innovation and Testing(CAICT),Ministry of Industry and Information Technology under Grant No.KL-2023-001。
文摘In Internet of Vehicles,VehicleInfrastructure-Cloud cooperation supports diverse intelligent driving and intelligent transportation applications.Federated Learning(FL)is the emerging computation paradigm to provide efficient and privacypreserving collaborative learning.However,in Io V environment,federated learning faces the challenges introduced by high mobility of vehicles and nonIndependently Identically Distribution(non-IID)of data.High mobility causes FL clients quit and the communication offline.The non-IID data leads to slow and unstable convergence of global model and single global model's weak adaptability to clients with different localization characteristics.Accordingly,this paper proposes a personalized aggregation strategy for hierarchical Federated Learning in Io V environment,including Fed SA(Special Asynchronous Federated Learning with Self-adaptive Aggregation)for low-level FL between a Road Side Unit(RSU)and the vehicles within its coverage,and Fed Att(Federated Learning with Attention Mechanism)for high-level FL between a cloud server and multiple RSUs.Agents self-adaptively obtain model aggregation weight based on Advantage Actor-Critic(A2C)algorithm.Experiments show the proposed strategy encourages vehicles to participate in global aggregation,and outperforms existing methods in training performance.
基金funded by Science and Technology Project of SGCC(SGJLCC00KJJS2203595).
文摘Aiming at the problem of increasing the peak-to-valley difference of grid load and the rising cost of user charging caused by the disorderly charging of large-scale electric vehicles,this paper proposes a coordinated charging scheduling strategy for multiple types of electric vehicles based on the degree of urgency of vehicle use.First,considering the range loss characteristics,dynamic time-sharing tariff mechanism,and user incentive policy in the lowtemperature environment of northern winter,a differentiated charging model is constructed for four types of vehicles:family cars,official cars,buses,and cabs.Then,we innovatively introduce the urgency parameter of charging demand for multiple types of vehicles and dynamically divide the emergency and non-emergency charging modes according to the difference between the regular charging capacity and the user’s minimum power demand.When the conventional charging capacity is less than the minimum power demand of the vehicle within the specified time,it is the emergency vehicle demand,and this type of vehicle is immediately charged in fast charging mode after connecting to the grid.On the contrary,it is a non-emergency demand,and the vehicle is connected to the grid to choose the appropriate time to charge in conventional charging mode.Finally,by optimizing the objective function to minimize the peakto-valley difference between the grid and the vehicle owner’s charging cost,and designing the charging continuity constraints to avoid battery damage,it ensures that the vehicle is efficiently dispatched under the premise of meeting the minimum power demand.Simulation results show that the proposed charging strategy can reduce the charging cost of vehicle owners by 26.33%,reduce the peak-to-valley difference rate of the grid by 29.8%,and significantly alleviate the congestion problem during peak load hours,compared with the disordered charging mode,while ensuring that the electric vehicles are not overcharged and meet the electricity demand of vehicle owners.This paper solves the problems of the existing research on the singularity of vehicle models and the lack of environmental adaptability and provides both economic and practical solutions for the cooperative optimization of electric vehicles and power grids in multiple scenarios.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1864205,Grant No.52172377).
文摘With increasingly serious environmental pollution and the energy crisis,fuel cell hybrid electric vehicles have been considered as an ideal alternative to traditional hybrid electric vehicles.Nevertheless,the total costs of fuel cell systems are still too high,thus limiting the further development of fuel cell hybrid electric vehicles.This paper presents an energy management strategy(EMS)based on deep reinforcement learning for the energy management of fuel cell hybrid electric vehicles.The energy management model of a fuel cell hybrid electric bus and its main components are established.Considering the power response characteristics of the fuel cell system,the power change rate of the fuel cell system is reasonably limited and introduced as action variables into the network of Double Deep Q-Learning(DDQL),and a novel DDQL-based EMS is developed for the fuel cell hybrid electric bus.Subsequently,a comparative test is conducted with the DP-based and the Rule-based EMS to analyze the performance of the DDQL-based EMS.The results indicate that the proposed EMS achieves good fuel economy performance,with an improvement of 15.4%compared to the Rule-based EMS under the training scenarios.In terms of generalization performance,the proposed EMS also achieves good fuel economy performance,which improves by 13.3%compared to the Rule-based energy management strategy under the testing scenario.
基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62371012in part by the Beijing Natural Science Foundation under Grant 4252001.
文摘As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072212,52302410)China Postdoctoral Science Foundation(Grant No,2024T170489)+3 种基金Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230354)Research and Development of Autonomous Driving Domain Controller and Its Algorithm(Grant No.2023Z070)Young Elite Scientists Sponsorship Program by CHINA-SAEShuimu Tsinghua Scholarship。
文摘The emergence of connected and automated vehicles(CAV)indicates improved traffic mobility in future traffic transportation systems.This study addresses the research gap in macroscopic traffic modeling of mixed traffic networks where CAV and human-driven vehicles coexist.CAV behavior is explicitly included in the proposed traffic network model,and the vehicle number non-conservation problem is overcome by describing the approaching and departure vehicle number in discrete time.The proposed model is verified in typical CAV cooperation scenarios.The performance of CAV coordination is analyzed in road,intersection and network scenario.Total travel time of the vehicles in the network is proved to be reduced when coordination is applied.Simulation results validate the accuracy of the proposed model and the effectiveness of the proposed algorithm.
基金supported by the Scientific Research Innovation Capability Support Project for Young Faculty,China(No.ZYGXQNJSKYCXNLZCXM-D1)the National Natural Science Foundation of China(No.52272384).
文摘Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal tools for reconnaissance and rescue missions.1 However,the operation of FMAVs relies on coordinating multiple forces with different scaling effects,posing challenges to miniaturization design.
基金Supported by National Natural Science Foundation of China(Grant No.61803206)Jiangsu Provincial Natural Science Foundation(Grant No.222300420468)Jiangsu Provincial key R&D Program(Grant No.BE2017008-2).
文摘Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex road traffic environment of smart vehicles and other vehicles frequently experiences conflicting start and stop motion.The fine-grained scheduling of autonomous vehicles(AVs)at non-signalized intersections,which is a promising technique for exploring optimal driving paths for both assisted driving nowadays and driverless cars in the near future,has attracted significant attention owing to its high potential for improving road safety and traffic efficiency.Fine-grained scheduling primarily focuses on signalized intersection scenarios,as applying it directly to non-signalized intersections is challenging because each AV can move freely without traffic signal control.This may cause frequent driving collisions and low road traffic efficiency.Therefore,this study proposes a novel algorithm to address this issue.Our work focuses on the fine-grained scheduling of automated vehicles at non-signal intersections via dual reinforced training(FS-DRL).For FS-DRL,we first use a grid to describe the non-signalized intersection and propose a convolutional neural network(CNN)-based fast decision model that can rapidly yield a coarse-grained scheduling decision for each AV in a distributed manner.We then load these coarse-grained scheduling decisions onto a deep Q-learning network(DQN)for further evaluation.We use an adaptive learning rate to maximize the reward function and employ parameterεto tradeoff the fast speed of coarse-grained scheduling in the CNN and optimal fine-grained scheduling in the DQN.In addition,we prove that using this adaptive learning rate leads to a converged loss rate with an extremely small number of training loops.The simulation results show that compared with Dijkstra,RNN,and ant colony-based scheduling,FS-DRL yields a high accuracy of 96.5%on the sample,with improved performance of approximately 61.54%-85.37%in terms of the average conflict and traffic efficiency.