In recent years, computer assisted surgery (CAS) systems become more and more common in clinical practices, but few specific design criteria have been proposed for human-computer interface (HCI) in GAS systems. Th...In recent years, computer assisted surgery (CAS) systems become more and more common in clinical practices, but few specific design criteria have been proposed for human-computer interface (HCI) in GAS systems. This paper tried to give universal criteria of HCI design for CAS systems through introduction of demonstration application, which is total knee replacement (TKR) with a nonimage-based navigation system. A typical computer assisted process can be divided into four phases: the preoperative planning phase, the intraoperative registration phase, the intraoperative navigation phase and finally the postoperative assessment phase. The interface design for four steps is described respectively in the demonstration application. These criteria this paper summarized can be useful to software developers to achieve reliable and effective interfaces for new CAS systems more easily.展开更多
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t...High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.展开更多
With the rapid development of online education,the impact of interface design on learning experience has become increasingly prominent.Reasonable color matching can effectively improve learning efficiency,enhance user...With the rapid development of online education,the impact of interface design on learning experience has become increasingly prominent.Reasonable color matching can effectively improve learning efficiency,enhance user engagement,and improve visual experience.This paper analyzes the application of color matching in interface design,discusses the principle of color matching in online course interfaces,and puts forward some design strategies.It provides a practical reference for the interface design of an online education platform.展开更多
Na-Se batteries have caught tremendous attention because of natural abundant of element sodium and their high volumetric energy density(2530 Wh/L).However,the low utilization ratio of Se is the main obstacle for pract...Na-Se batteries have caught tremendous attention because of natural abundant of element sodium and their high volumetric energy density(2530 Wh/L).However,the low utilization ratio of Se is the main obstacle for practical application.Herein,an advanced Se-based electrode is designed and prepared by using tea stem-derived micropore carbon matrix(TSC)as Se host and coating TSC/Se with cyclic polyacrylonitrile(cPAN).TSC/Se/cPAN electrode shows rate capacity of 318.3 mAh/g at 2 C(1 C=675 mA/g)and great discharge capacity of 420.6 mAh/g after 300 cycles at 0.2 C.The impressive electrochemical performance is mainly ascribed to the interface design of c PAN coating,resulting in the enhanced electronic conductivity of whole electrode and high ratio of robust inorganic salt NaCl in CEI film.The TSC/Se/c PAN||NVP full cell also exhibits great discharge capacity of 556.6 mAh/g after 55 cycles at 0.1 C.展开更多
In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking s...In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking smart washing machines as an example,to explore new paths for the interface design of smart home products for the elderly.An interdisciplinary approach is adopted to construct a design process centered on elderly users,introduce the Kano model to classify requirements,realize the mapping and sorting of requirements to design parameters,and adopt the PUGH model for comprehensive evaluation.This study provides practical and theoretical support for the interface design of smart home products for the elderly.展开更多
In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre...In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre-defined hand poses: up, down, left, right, yes, and no. In order to research the possibility of using a unified amplifier for both electroencephalogram (EEG) and EMG, the surface forearm EMG data is acquired by a 4-channel EEG measurement system. The Bayesian classifier is used to classify the power spectral density (PSD) of the signal. The experiment result verifies that this control system can supply a high command recognition rate (average 48%) even the EMG data is collected with an EEG system just with single electrode measurement.展开更多
Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model...Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model for this problem is presented. Usinghuman-computer cooperative genetic algorithm (GA) and its hybrid optitation strategies, integratedlayout and connection design schemes of HMB can be automatically optimized. An example is given totestify it.展开更多
We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraint...We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraints related to acceptance by patients and physiotherapist users.To date,most designs have focused on mobile platforms that are designed to be operated as an end-effector connected to human limbs for direct patient interaction.Some specific examples are illustrated from the authors' experience with prototypes available at Laboratory of Robotics and Mechatronics (LARM),Italy.展开更多
Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applicati...Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed.展开更多
Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- M...Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- Mo- Cu ductileiron with rareearth Mg asnodularizer was designed accordingtothese valenceelectron structure parameters. Actual applicationtestsshow thatthelongevity of thisiron is 1.5 timesof thatof high manganesesteel. This accordance of theoretical results and actual effectsshows the composition design methodcan beused in othercastiron research.展开更多
The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of light...The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices,but there are remaining unprecedented challenges.Herein,the self-assembly VS_(4)/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.The microarchitecture and heterointerface of VS_(4)/rGO heterostructure can be regulated by the generation of VS_(4) nanorods anchored on rGO,which can effectively modulate the impedance matching and attenuation constant.The maximum reflection loss of 2VS_(4)/rGO40 heterostructure can reach−43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187,respectively.The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations.Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization,interfacial polarization,and multiple reflections and scatterings of microwaves.Overall,the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.展开更多
HIV-1 capsid protein(CA) has emerged as a promising target for antiviral treatment considering its structural and regulatory roles in HIV-1 replication. Here, we disclose the design, synthesis, biological assessment, ...HIV-1 capsid protein(CA) has emerged as a promising target for antiviral treatment considering its structural and regulatory roles in HIV-1 replication. Here, we disclose the design, synthesis, biological assessment, and mechanism investigation of a novel series of phenylalanine derivatives gained by further structural modification of PF74. The newly synthesized compounds demonstrated potent anti-HIV activity, represented by 7n displayed anti-HIV-1 activity 6.25-fold better than PF74, and 7h showed anti-HIV-2activity with nearly 139 times improved efficacy over PF74. Surface plasmon resonance(SPR) studies of representative compounds proved that HIV-1 CA was the binding target. Competitive SPR studies using CPSF6 and NUP153 peptides identified that 7n binds to a vital CA assembly interface between the Nterminal and C-terminal domain(NTD-CTD interface). Action stage determination assay revealed that the newly synthesized compounds were antiviral with a dual-stage inhibitory profile. Molecular dynamics(MD) simulations offered the crucial foundation for the hopeful antiviral potency of 7n. Besides, 7m and7n modestly increased metabolic stabilities in human liver microsome(HLM) and human plasma compared to PF74. Overall, these studies offer valuable insights and can regard as the beginning for succedent medicinal chemistry endeavors to discover promising HIV capsid inhibitors with improved efficacy and better drug-like characteristics.展开更多
Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional de...Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.展开更多
The interfacial structure plays an important role in the mechanical properties of magnesium matrix composite(MMCs)reinforced with graphene nanosheet(GNS)due to their poor wettability with the Mg matrix.An interface de...The interfacial structure plays an important role in the mechanical properties of magnesium matrix composite(MMCs)reinforced with graphene nanosheet(GNS)due to their poor wettability with the Mg matrix.An interface design strategy was proposed to form the semi-coherent interfacial structure with superior bonding strength.The lattice mismatch and interfacial bonding strength between Mg/rare earth oxide/carbon were utilized as key characteristics to evaluate the interfacial structure.Lanthanum oxide(La2O3)was selected as the intermediate candidate due to its low lattice mismatch and high interfacial bonding strength.To identify the interfacial structure of Mg/La2O3/graphene,first-principles calculations were conducted to calculate the ideal work of separation and electronic structure of the interfaces.Results demonstrated the presence of strong ionic and covalent interactions at the interface,which theoretically verified the strong interfacial bonding strength among Mg/La2O3/graphene interfaces.To experimentally validate the interface strength,MMCs with the interface structure of Mg/La2O3/GNS were developed.The formation of in-situ La2O3 led to the successful attainment of semi-coherent structures between Mg/La2O3 and La2O3/GNS,resulting in high strength and good ductility of the composite.Overall,this work proposes a new approach to interface design in MMCs with an enhancement of mechanical properties.展开更多
To meet the challenges of ubiquitous computing, ambient technologies and an increasingly older population, researchers have been trying to break away from traditional modes of interaction. A history of studies over th...To meet the challenges of ubiquitous computing, ambient technologies and an increasingly older population, researchers have been trying to break away from traditional modes of interaction. A history of studies over the past 30 years reported in this paper suggests that Gesture Controlled User Interfaces (GCUI) now provide realistic and affordable opportunities, which may be appropriate for older and disabled people. We have developed a GCUI prototype application, called Open Gesture, to help users carry out everyday activities such as making phone calls, controlling their television and performing mathematical calculations. Open Gesture uses simple hand gestures to perform a diverse range of tasks via a television interface. This paper describes Open Gesture and reports its usability evaluation. We conclude that this inclusive technology offers some potential to improve the independence and quality of life of older and disabled users along with general users, although there remain significant challenges to be overcome.展开更多
As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interfac...As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interface were analyzed, and several methods of the design-manufacture interface relationship management were compared. Based on theories concerned and enterprise practice, how to manage the relationship of design-manufacture interface to reduce the product cost and shorten the time-to-market was demonstrated, finally the competitive advantage was improved.展开更多
The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, ...The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.展开更多
Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Severa...Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.展开更多
As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the s...As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the status of the machine at all times. A user-centred design focus was employed to develop two conceptual designs (UCD1 & UCD2) for a user interface for an agricultural air seeder. The two concepts were compared against an existing user interface (baseline condition) using the metrics of situation awareness (Situation Awareness Global Assessment Technique), mental workload (Integrated Workload Scale), reaction time, and subjective feedback. There were no statistically significant differences among the three user interfaces based on the metric of situation awareness;however, UCD2 was deemed to be significantly better than either UCD1 or the baseline interface on the basis of mental workload, reaction time and subjective feedback. The research has demonstrated that a user-centred design focus will generate a better user interface for an agricultural machine.展开更多
This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer...This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer to commence operation, monitor the status of the sprayer and its operation in the field, and intervene when needed (i.e., to stop or shut down). Design principles and guidelines were carefully selected to help develop a human-centered automation interface. Evaluation of the interface using a combination of heuristic, cognitive walkthrough, and user testing techniques revealed several strengths of the design as well as areas that needed further improvement. Overall, this paper provides guidelines that will assist other researchers to develop an ergonomic user interface for a fully autonomous agricultural machine.展开更多
基金the National High Technology Research and Development Program (863) of China(No. 2006AA02A137)
文摘In recent years, computer assisted surgery (CAS) systems become more and more common in clinical practices, but few specific design criteria have been proposed for human-computer interface (HCI) in GAS systems. This paper tried to give universal criteria of HCI design for CAS systems through introduction of demonstration application, which is total knee replacement (TKR) with a nonimage-based navigation system. A typical computer assisted process can be divided into four phases: the preoperative planning phase, the intraoperative registration phase, the intraoperative navigation phase and finally the postoperative assessment phase. The interface design for four steps is described respectively in the demonstration application. These criteria this paper summarized can be useful to software developers to achieve reliable and effective interfaces for new CAS systems more easily.
基金supported by the National Natural Science Foundation of China(Nos.52122408 and 52474397)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(No.242017127)+1 种基金the financial support from the Fundamental Research Funds for the Central Universities(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1 and 06500135)supported by USTB MatCom of Beijing Advanced Innovation Center for Materials Genome Engineering。
文摘High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys.
文摘With the rapid development of online education,the impact of interface design on learning experience has become increasingly prominent.Reasonable color matching can effectively improve learning efficiency,enhance user engagement,and improve visual experience.This paper analyzes the application of color matching in interface design,discusses the principle of color matching in online course interfaces,and puts forward some design strategies.It provides a practical reference for the interface design of an online education platform.
基金financially supported by Fujian Science and Technology Planning Projects of China(Nos.2022T3067 and 2023H0045)the Self-deployment Project Research Programs of Haixi Institutes,Chinese Academy of Sciences(No.CXZX2022-JQ12)the XIREM autonomously deployment project(No.2023GG02)。
文摘Na-Se batteries have caught tremendous attention because of natural abundant of element sodium and their high volumetric energy density(2530 Wh/L).However,the low utilization ratio of Se is the main obstacle for practical application.Herein,an advanced Se-based electrode is designed and prepared by using tea stem-derived micropore carbon matrix(TSC)as Se host and coating TSC/Se with cyclic polyacrylonitrile(cPAN).TSC/Se/cPAN electrode shows rate capacity of 318.3 mAh/g at 2 C(1 C=675 mA/g)and great discharge capacity of 420.6 mAh/g after 300 cycles at 0.2 C.The impressive electrochemical performance is mainly ascribed to the interface design of c PAN coating,resulting in the enhanced electronic conductivity of whole electrode and high ratio of robust inorganic salt NaCl in CEI film.The TSC/Se/c PAN||NVP full cell also exhibits great discharge capacity of 556.6 mAh/g after 55 cycles at 0.1 C.
文摘In an aging society,the interface design of smart home products is crucial to the quality of life of the elderly.This paper combines Quality Function Deployment(QFD)and Human-Computer Interaction(HCI)theories,taking smart washing machines as an example,to explore new paths for the interface design of smart home products for the elderly.An interdisciplinary approach is adopted to construct a design process centered on elderly users,introduce the Kano model to classify requirements,realize the mapping and sorting of requirements to design parameters,and adopt the PUGH model for comprehensive evaluation.This study provides practical and theoretical support for the interface design of smart home products for the elderly.
基金supported by the National Natural Science Foundation of China under Grant No. 60736029 and 30525030UESTC Youth Foundation under Grant No. L08010901JX0772 for support.
文摘In this paper, a new control system based on forearm electromyogram (EMG) is proposed for computer peripheral control and artificial prosthesis control. This control system intends to realize the commands of six pre-defined hand poses: up, down, left, right, yes, and no. In order to research the possibility of using a unified amplifier for both electroencephalogram (EEG) and EMG, the surface forearm EMG data is acquired by a 4-channel EEG measurement system. The Bayesian classifier is used to classify the power spectral density (PSD) of the signal. The experiment result verifies that this control system can supply a high command recognition rate (average 48%) even the EMG data is collected with an EEG system just with single electrode measurement.
基金This project is supported by Provincial ScienceTechnology Foundation of Liaoning (No. 20022132)
文摘Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model for this problem is presented. Usinghuman-computer cooperative genetic algorithm (GA) and its hybrid optitation strategies, integratedlayout and connection design schemes of HMB can be automatically optimized. An example is given totestify it.
基金supported by the research project RORAS 2 of the Mediterranean Program funded by INRIA,France
文摘We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraints related to acceptance by patients and physiotherapist users.To date,most designs have focused on mobile platforms that are designed to be operated as an end-effector connected to human limbs for direct patient interaction.Some specific examples are illustrated from the authors' experience with prototypes available at Laboratory of Robotics and Mechatronics (LARM),Italy.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:51771184,11735015,51801203,51771181)the Natural Science Foundation of Anhui Province(Grant No.1808085QE132)+2 种基金the Open Project of State Key Laboratory of Environment friendly Energy Materials(18kfhg02)a fund from the Science and Technology on Surface Physics and Chemistry Laboratory(Grant No.JZX7Y201901SY00900103)the Innovation Center of Nuclear Materials for National Defense Industry。
文摘Refractory alloys such as tungsten and molybdenum based alloys with high strength,thermal/electrical conductivity,low coefficient of thermal expansion and excellent creep resistances are highly desirable for applications in nuclear facilities,critical components in aerospace and defense components.However,the serious embrittlement limits the engineering usability of some refractory alloys.A lot of research results indicate that the performances of refractory alloys are closely related to the physical/chemical status,such as the interface dimension,interface type,interface composition of their grain boundaries(GBs),phase boundaries(PBs)and other interface features.This paper reviewed the recent progress of simulations and experiments on interface design strategies that achieve high performance refractory alloys.These strategies include GB interface purifying/strengthening,PB interface strengthening and PB/GB synergistic strengthening.Great details are provided on the design/fabrication strategy such as GB interface controlling,PB interface controlling and synergistic control of multi-scaled interfaces.The corresponding performances such as the mechanical property,thermal conductivity,thermal load resistance,thermal stability,irradiation resistance,and oxidation resistance are reviewed in the aspect to the effect of interfaces.In addition,the relationships between these interfaces and material properties are discussed.Finally,future developments and potential new research directions for refractory alloys are proposed.
文摘Theempiricalelectrontheory of solidsand molecules( EET) and theimproved TFDtheory wereapplied tocalculatethe phasestructurefactorsand interfaceconjunction factorsofcom mon alloying elementsincastiron. Akind of Si- Mo- Cu ductileiron with rareearth Mg asnodularizer was designed accordingtothese valenceelectron structure parameters. Actual applicationtestsshow thatthelongevity of thisiron is 1.5 timesof thatof high manganesesteel. This accordance of theoretical results and actual effectsshows the composition design methodcan beused in othercastiron research.
基金supported by the National Key Research and Development Program of China(Nos.2018YFA0703500)the National Natural Science Foundation of China(Nos.52188101,52102153,52072029,51991340,51991342,51972022)+1 种基金the Overseas Expertise Introduction Projects for Discipline Innovation(B14003)the Fundamental Research Funds for Central Universities(FRF-TP-18-001C1).
文摘The employment of microwave absorbents is highly desirable to address the increasing threats of electromagnetic pollution.Importantly,developing ultrathin absorbent is acknowledged as a linchpin in the design of lightweight and flexible electronic devices,but there are remaining unprecedented challenges.Herein,the self-assembly VS_(4)/rGO heterostructure is constructed to be engineered as ultrathin microwave absorbent through the strategies of architecture design and interface engineering.The microarchitecture and heterointerface of VS_(4)/rGO heterostructure can be regulated by the generation of VS_(4) nanorods anchored on rGO,which can effectively modulate the impedance matching and attenuation constant.The maximum reflection loss of 2VS_(4)/rGO40 heterostructure can reach−43.5 dB at 14 GHz with the impedance matching and attenuation constant approaching 0.98 and 187,respectively.The effective absorption bandwidth of 4.8 GHz can be achieved with an ultrathin thickness of 1.4 mm.The far-reaching comprehension of the heterointerface on microwave absorption performance is explicitly unveiled by experimental results and theoretical calculations.Microarchitecture and heterointerface synergistically inspire multi-dimensional advantages to enhance dipole polarization,interfacial polarization,and multiple reflections and scatterings of microwaves.Overall,the strategies of architecture design and interface engineering pave the way for achieving ultrathin and enhanced microwave absorption materials.
基金financial support from the National Natural Science Foundation of China(NSFC,Nos.82173677,81773574)the Key Project of NSFC for International Cooperation(No.81420108027)+2 种基金the Shandong Provincial Key Research and Development Project(No.2019JZZY021011)the Science Foundation for Outstanding Young Scholars of Shandong Province(No.ZR2020JQ31)NIH/NIAID grant(No.R01AI150491,Cocklin,PI,Salvino,Co-I)。
文摘HIV-1 capsid protein(CA) has emerged as a promising target for antiviral treatment considering its structural and regulatory roles in HIV-1 replication. Here, we disclose the design, synthesis, biological assessment, and mechanism investigation of a novel series of phenylalanine derivatives gained by further structural modification of PF74. The newly synthesized compounds demonstrated potent anti-HIV activity, represented by 7n displayed anti-HIV-1 activity 6.25-fold better than PF74, and 7h showed anti-HIV-2activity with nearly 139 times improved efficacy over PF74. Surface plasmon resonance(SPR) studies of representative compounds proved that HIV-1 CA was the binding target. Competitive SPR studies using CPSF6 and NUP153 peptides identified that 7n binds to a vital CA assembly interface between the Nterminal and C-terminal domain(NTD-CTD interface). Action stage determination assay revealed that the newly synthesized compounds were antiviral with a dual-stage inhibitory profile. Molecular dynamics(MD) simulations offered the crucial foundation for the hopeful antiviral potency of 7n. Besides, 7m and7n modestly increased metabolic stabilities in human liver microsome(HLM) and human plasma compared to PF74. Overall, these studies offer valuable insights and can regard as the beginning for succedent medicinal chemistry endeavors to discover promising HIV capsid inhibitors with improved efficacy and better drug-like characteristics.
文摘Today’s product creative design has rendered many fe atures and has brought a great change in our everyday life, there are many new c hallenges in its traditional theory and principle. According to the traditional design theory, the FBS design model pays more attention to the function and stru cture of the product. But this model still couldn’t strengthen the relation bet ween product appearance design and human-machine design effectively. This paper adopt converse design thinking and presents an improved design thinking methodo logy based on C: FBS for product appearance design and give a general summarizat ion for the features, methods and technology based on human-machine interaction and interface. Meanwhile it also combines with the behavior design of product r elated IT fields and constructs a new outline to improve the design of product a ppearance supported by the technology of computer aided design. So the new metho d about design thinking for computer aided design, the new abstract product design model and the key problem of design thinking based on human-machine inte raction and interface are addressed in this paper. This kind of creative design theory that is driven by human-machine interaction and interface will help the development of CAD software system and the research of product design and manufa cture. Additionally, this paper gives some beneficial characters to address the theory based on human-machine interaction and interface. Meanwhile, combining with the developing of computer technology, the trends of design thinking based on t he technology of human-machine interaction and interface are also analyzed and discussed at the end of this paper.
基金supported by the National Key Research and Development Program of China (No.2022YFC2905204)the National Natural Science Foundation of China (Nos.52061028,52061039)the Interdisciplinary Innovation Fund of Nanchang University (IIFNCU),China (No.9166-27060003-ZD05).
文摘The interfacial structure plays an important role in the mechanical properties of magnesium matrix composite(MMCs)reinforced with graphene nanosheet(GNS)due to their poor wettability with the Mg matrix.An interface design strategy was proposed to form the semi-coherent interfacial structure with superior bonding strength.The lattice mismatch and interfacial bonding strength between Mg/rare earth oxide/carbon were utilized as key characteristics to evaluate the interfacial structure.Lanthanum oxide(La2O3)was selected as the intermediate candidate due to its low lattice mismatch and high interfacial bonding strength.To identify the interfacial structure of Mg/La2O3/graphene,first-principles calculations were conducted to calculate the ideal work of separation and electronic structure of the interfaces.Results demonstrated the presence of strong ionic and covalent interactions at the interface,which theoretically verified the strong interfacial bonding strength among Mg/La2O3/graphene interfaces.To experimentally validate the interface strength,MMCs with the interface structure of Mg/La2O3/GNS were developed.The formation of in-situ La2O3 led to the successful attainment of semi-coherent structures between Mg/La2O3 and La2O3/GNS,resulting in high strength and good ductility of the composite.Overall,this work proposes a new approach to interface design in MMCs with an enhancement of mechanical properties.
文摘To meet the challenges of ubiquitous computing, ambient technologies and an increasingly older population, researchers have been trying to break away from traditional modes of interaction. A history of studies over the past 30 years reported in this paper suggests that Gesture Controlled User Interfaces (GCUI) now provide realistic and affordable opportunities, which may be appropriate for older and disabled people. We have developed a GCUI prototype application, called Open Gesture, to help users carry out everyday activities such as making phone calls, controlling their television and performing mathematical calculations. Open Gesture uses simple hand gestures to perform a diverse range of tasks via a television interface. This paper describes Open Gesture and reports its usability evaluation. We conclude that this inclusive technology offers some potential to improve the independence and quality of life of older and disabled users along with general users, although there remain significant challenges to be overcome.
文摘As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interface were analyzed, and several methods of the design-manufacture interface relationship management were compared. Based on theories concerned and enterprise practice, how to manage the relationship of design-manufacture interface to reduce the product cost and shorten the time-to-market was demonstrated, finally the competitive advantage was improved.
基金Supported by the National Natural Science Foundation of China (No. 40071071).
文摘The fusion of VlSI (visual identity system Internet), digital maps and Web GIS is presented. Web GIS interface interactive design with VISI needs to consider more new factors. VISI can provide the design principle, elements and contents for the Web GIS. The design of the Wuhan Bus Search System is fulfilled to confirm the validity and practicability of the fusion.
基金Supported by the‘Automotive Glazing Application in Intelligent Cockpit Human-Machine Interface’project(SKHX2021049)a collaboration between the Saint-Go Bain Research and the Beijing Normal University。
文摘Background With an increasing number of vehicles becoming autonomous,intelligent,and connected,paying attention to the future usage of car human-machine interface with these vehicles should become more relevant.Several studies have addressed car HMI but were less attentive to designing and implementing interactive glazing for every day(autonomous)driving contexts.Methods Reflecting on the literature,we describe an engineering psychology practice and the design of six novel future user scenarios,which envision the application of a specific set of augmented reality(AR)support user interactions.Additionally,we conduct evaluations on specific scenarios and experiential prototypes,which reveal that these AR scenarios aid the target user groups in experiencing a new type of interaction.The overall evaluation is positive with valuable assessment results and suggestions.Conclusions This study can interest applied psychology educators who aspire to teach how AR can be operationalized in a human-centered design process to students with minimal pre-existing expertise or minimal scientific knowledge in engineering psychology.
文摘As agricultural machines become more complex, it is increasingly critical that special attention be directed to the design of the user interface to ensure that the operator will have an adequate understanding of the status of the machine at all times. A user-centred design focus was employed to develop two conceptual designs (UCD1 & UCD2) for a user interface for an agricultural air seeder. The two concepts were compared against an existing user interface (baseline condition) using the metrics of situation awareness (Situation Awareness Global Assessment Technique), mental workload (Integrated Workload Scale), reaction time, and subjective feedback. There were no statistically significant differences among the three user interfaces based on the metric of situation awareness;however, UCD2 was deemed to be significantly better than either UCD1 or the baseline interface on the basis of mental workload, reaction time and subjective feedback. The research has demonstrated that a user-centred design focus will generate a better user interface for an agricultural machine.
文摘This paper describes the design and evaluation of a user interface for a remotely supervised autonomous agricultural sprayer. The interface was designed to help the remote supervisor to instruct the autonomous sprayer to commence operation, monitor the status of the sprayer and its operation in the field, and intervene when needed (i.e., to stop or shut down). Design principles and guidelines were carefully selected to help develop a human-centered automation interface. Evaluation of the interface using a combination of heuristic, cognitive walkthrough, and user testing techniques revealed several strengths of the design as well as areas that needed further improvement. Overall, this paper provides guidelines that will assist other researchers to develop an ergonomic user interface for a fully autonomous agricultural machine.