In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operati...In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings.展开更多
To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Xizang Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in v...Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.展开更多
We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-ly...We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-lying excited states to the 1s-muon state can lead to the production of electron-positron pairs.We show that the Breit interaction determines the transition probabilities for states with nonzero orbital momentum.We show that the pair production arises mainly from the decay of the 2p states.Thus,the Breit interaction governs electron-positron pair production in bound-bound muon transitions.This process offers a unique opportunity to explore quantum electrodynamics in strong fields,as well as a class of nonradiative transitions involving electron-positron pair production.展开更多
Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational ...Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational pumping effect, mainstream pressure asymmetry, rotor–stator interaction,and unsteady flow structures, complicating the flow. To investigate the impact of rotor–stator interaction on ingestion, this paper decouples the model to include only the mainstream. This research employs experiments and numerical simulations to examine the effects of varying the flow coefficient through changes in rotational speed and mainstream flow rate. The main objective is to understand the influence of different rotor–stator interactions on the mainstream pressure field, accompanied by mechanistic explanations. The findings reveal inconsistent effects of the two methods for changing the flow coefficient on the mainstream pressure field. Particularly, the pressure distribution on the vane side primarily depends on the mainstream flow rate, while the pressure on the blade side is influenced by the mainstream flow rate and the attack angle represented by the flow coefficient. A larger angle of attack angle can increase pressure on the blade side, even surpassing the pressure on the vane side. Assessing the degree of mainstream pressure unevenness solely based on the pressure difference on the vane side is insufficient. This research provides a basis for subsequent studies on the influence of coupled real turbine rotor–stator interaction on gas ingestion.展开更多
Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial str...Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.展开更多
Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the in...Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.展开更多
Double-exchange(DE) interaction plays an important role in electrocatalytic oxygen evolution reaction(OER).However,precise achievement of DE interaction often requires foreign dopants or vacancy engineering,leading to...Double-exchange(DE) interaction plays an important role in electrocatalytic oxygen evolution reaction(OER).However,precise achievement of DE interaction often requires foreign dopants or vacancy engineering,leading to destabilization of the catalysts and deterioration of performance.By contrast,the utilization of environmentally friendly,contactless,and continuously adjustable magnetic fields to study the OER process is profitable to avoid aforementioned interference factors and further elucidate the direct relationship_(0.5)between DE interaction and OER activity.Here,by using cobalt hydroxide carbonate(Co(OH)(CO_(3))·xH_(2)O,CoHC) nanostructures as a proof-of-concept study,external magnetic fields are carefully implemented to verify the role of DE interaction during water oxidation reaction.Detailed studies reveal that external magnetic fields effectively enhance the reaction rate of the catalyst,the overpotential decreases from 386 to 355 mV(100 mA·cm^(-2)),while Tafel slopes drastically decline from 93 to 67 mV·dec^(-1)(1.0 T).Moreover,magnetic field increment exhibits robust durability.Through in situ Raman and impedance measurements under external field,it can be found that magnetic field promotes the electron migration between Co^(2+) and Co^(3+) in the CoHC catalysts with the assistance of DE interactions,thus boosting the OER efficiency.展开更多
Recently,vision-based gesture recognition(VGR)has become a hot research spot in human-computer interaction(HCI).Unlike other gesture recognition methods with data gloves or other wearable sensors,vision-based gesture ...Recently,vision-based gesture recognition(VGR)has become a hot research spot in human-computer interaction(HCI).Unlike other gesture recognition methods with data gloves or other wearable sensors,vision-based gesture recognition could lead to more natural and intuitive HCI interactions.This paper reviews the state-of-the-art vision-based gestures recognition methods,from different stages of gesture recognition process,i.e.,(1)image acquisition and pre-processing,(2)gesture segmentation,(3)gesture tracking,(4)feature extraction,and(5)gesture classification.This paper also analyzes the advantages and disadvantages of these various methods in detail.Finally,the challenges of vision-based gesture recognition in haptic rendering and future research directions are discussed.展开更多
With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-...With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-Computer Interaction(HCI)course and teaching material is out of date,it cannot meet the needs of mobile application interaction design and enterprises for students.Therefore,we need a new generation HCI course based on intelligent mobile devices to study the relationship between users and systems.The HCI course not only teaches students HCI theory and model,but also needs to cultivate students’interaction-oriented design practical ability.This paper proposes a set of HCI teaching material design and teaching methods for improving HCI class quality on mobile application interaction design,so as to make students more suitable for the employment requirements of enterprises.展开更多
Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide...Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.展开更多
Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates...Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.展开更多
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
This paper addresses the issue of reciprocating compressors staggered labyrinth seal structure. The internal flow field of sealed structure, the displacement of cylinder and piston for different tooth profile angles a...This paper addresses the issue of reciprocating compressors staggered labyrinth seal structure. The internal flow field of sealed structure, the displacement of cylinder and piston for different tooth profile angles are analyzed synchronously using FLUENT software, and the effects of fluid-structure interaction on the performance of the labyrinth seal are revealed. The results indicate that with the growth of tooth profile angle, the leakage rate of labyrinth seal tends to decrease first, and then increase. The results of fluid-structure interaction analysis are close to those of actual engineering. The effect of fluid-structure interaction makes tiny deformation in calculation mesh of piston and cylinder structure, and the coupling interaction affects the performance of the labyrinth seal.展开更多
The shear stress field proximity to the twinning and prismatic/basal interfaces of {1012} tensile twins is shown by molecular dynamics simulations.The stress field interacts and influences the twinning growth mode in ...The shear stress field proximity to the twinning and prismatic/basal interfaces of {1012} tensile twins is shown by molecular dynamics simulations.The stress field interacts and influences the twinning growth mode in the subsequent deformation process,which is simulated by changing the relative positions of the nuclei.An asymmetrical growth mode appears,in which the growth of one twin is predominant over the other when they are oriented at 45° to each other.This growth mode is sensitive to the simulation temperature and strain rate and can be attributed to the interaction of the stress field proximity to the prismatic/basal interfaces and twinning planes.展开更多
Pairwise thermal entanglement in a three-qubit Heisenberg XX model is investigated when a nonuniform mag- netic field and the Dzyaloshinski-Moriya interaction are included. We find that the nonuniform magnetic field a...Pairwise thermal entanglement in a three-qubit Heisenberg XX model is investigated when a nonuniform mag- netic field and the Dzyaloshinski-Moriya interaction are included. We find that the nonuniform magnetic field and Dzyaloshinski-Moriya interaction are the more efficient control parameters for the increase of entanglement and critical temperature. For both the nearest neighbour sites and the next nearest neighbour sites, the magnetic field can induce entanglement to a certain extent and the Dzyaloshinski-Moriya interaction can enhance the entanglement to a stable value. The steady value of the nearest neighbour site entanglement C12 is larger than the next nearest neighbour site entanglement C13. An interesting phenomenon is that the entanglement curve of C12 appears a peak value when the Dzyaloshinski-Moriya interaction is considered in a nonuniform magnetic field.展开更多
To improve current understanding of the water cycle,energy partitioning and CO2 exchange over hilly zone vegetative land surfaces in the subtropical monsoon environment of southern China,a long-term field experiment o...To improve current understanding of the water cycle,energy partitioning and CO2 exchange over hilly zone vegetative land surfaces in the subtropical monsoon environment of southern China,a long-term field experiment observatory was set up at Ningxiang,eastern Hunan Province.This paper presents a preliminary analysis of the field observations at the observatory collected from August to November 2012.Results show that significant diurnal variations in soil temperature occur only in shallow soil layers(0.05,0.10,and 0.20 m),and that heavy rainfall affects soil moisture in the deep layers(≥ 0.40 m).During the experimental period,significant diurnal variations in albedo,radiation components,energy components,and CO2 flux were observed,but little seasonal variation.Strong photosynthesis in the vegetation canopy enhanced the CO2 absorption and the latent heat released in daylight hours;Latent heat of evaporation was the main consumer of available energy in late summer.Because the field experiment data are demonstrably reliable,the observatory will provide reliable long-term measurements for future investigations of the land-atmosphere interaction over hilly land surfaces in the subtropical monsoon region of southern China.展开更多
Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regressio...Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.展开更多
In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carri...In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carried by informatons is the substance of the medium that the interaction in question makes possible. It has been showed that, on the macroscopic level, that medium—the “gravitational field”—manifests itself as the vector field Eg. In this article we will deduce from the postulate of the emission of informatons, that the informatons emitted by a moving mass particle carry not only information about the position (g-information) but also about the velocity (“β-information”) of their emitter. It follows that the gravitational field of a moving mass particle is a dual entity always having a field- and an induction-component (Egand Bg) simultaneously created by their common sources: time-variable masses and mass flows and that the gravitational interaction is the effect of the fact that an object in a gravitational field always tends to become “blind” for that field by accelerating according to a Lorentz-like law.展开更多
基金the Talent Fund of Beijing Jiaotong University(Grant No.2024XKRC055).
文摘In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings.
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Xizang Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
基金Supported by the Natienal Natural Science Foundation of China(U23A20287).
文摘Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602501)the National Natural Science Foundation of China(Grant No.12011530060)+1 种基金supported solely by the Russian Science Foundation(Grant No.22-12-00043)supported by the Chinese Academy of Sciences(CAS)Presidents International Fellowship Initiative(PIFI)(Grant Nos.2018VMB0016 and 2022VMC0002),respectively。
文摘We explored a distinct mechanism for matter creation via electron-positron pair production during bound-bound transitions in the deexcitation of muonic atoms.For ions with nuclear charges Z≥24,transitions from low-lying excited states to the 1s-muon state can lead to the production of electron-positron pairs.We show that the Breit interaction determines the transition probabilities for states with nonzero orbital momentum.We show that the pair production arises mainly from the decay of the 2p states.Thus,the Breit interaction governs electron-positron pair production in bound-bound muon transitions.This process offers a unique opportunity to explore quantum electrodynamics in strong fields,as well as a class of nonradiative transitions involving electron-positron pair production.
基金the National Natural Science Foundation Outstanding Youth Foundation (Grant No.52122603)the National Science and Technology Major Project (J2019-Ⅲ-0003–0046)。
文摘Clarifying the gas ingestion mechanism in the turbine disc cavity of marine gas turbines is crucial for ensuring the normal operation of turbines.However, the ingestion is influenced by factors such as the rotational pumping effect, mainstream pressure asymmetry, rotor–stator interaction,and unsteady flow structures, complicating the flow. To investigate the impact of rotor–stator interaction on ingestion, this paper decouples the model to include only the mainstream. This research employs experiments and numerical simulations to examine the effects of varying the flow coefficient through changes in rotational speed and mainstream flow rate. The main objective is to understand the influence of different rotor–stator interactions on the mainstream pressure field, accompanied by mechanistic explanations. The findings reveal inconsistent effects of the two methods for changing the flow coefficient on the mainstream pressure field. Particularly, the pressure distribution on the vane side primarily depends on the mainstream flow rate, while the pressure on the blade side is influenced by the mainstream flow rate and the attack angle represented by the flow coefficient. A larger angle of attack angle can increase pressure on the blade side, even surpassing the pressure on the vane side. Assessing the degree of mainstream pressure unevenness solely based on the pressure difference on the vane side is insufficient. This research provides a basis for subsequent studies on the influence of coupled real turbine rotor–stator interaction on gas ingestion.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175310,12305268,and U2241281)the Natural Science Foundation of Hunan Province(Grant Nos.2024JJ6184,2022JJ20042,and 2021JJ40653)the Scientific Research Foundation of Hunan Provincial Education Department(Grant Nos.22B0655 and 22A0435)。
文摘Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61627813,62204018,and 61571023)the Beijing Municipal Science and Technology Project(Grant No.Z201100004220002)+2 种基金the National Key Technology Program of China(Grant No.2017ZX01032101)the Program of Introducing Talents of Discipline to Universities in China(Grant No.B16001)the VR Innovation Platform from Qingdao Science and Technology Commission.
文摘Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection.
基金financially supported by the Program B for Outstanding PhD Candidate of Nanjing University(No.201801B067)。
文摘Double-exchange(DE) interaction plays an important role in electrocatalytic oxygen evolution reaction(OER).However,precise achievement of DE interaction often requires foreign dopants or vacancy engineering,leading to destabilization of the catalysts and deterioration of performance.By contrast,the utilization of environmentally friendly,contactless,and continuously adjustable magnetic fields to study the OER process is profitable to avoid aforementioned interference factors and further elucidate the direct relationship_(0.5)between DE interaction and OER activity.Here,by using cobalt hydroxide carbonate(Co(OH)(CO_(3))·xH_(2)O,CoHC) nanostructures as a proof-of-concept study,external magnetic fields are carefully implemented to verify the role of DE interaction during water oxidation reaction.Detailed studies reveal that external magnetic fields effectively enhance the reaction rate of the catalyst,the overpotential decreases from 386 to 355 mV(100 mA·cm^(-2)),while Tafel slopes drastically decline from 93 to 67 mV·dec^(-1)(1.0 T).Moreover,magnetic field increment exhibits robust durability.Through in situ Raman and impedance measurements under external field,it can be found that magnetic field promotes the electron migration between Co^(2+) and Co^(3+) in the CoHC catalysts with the assistance of DE interactions,thus boosting the OER efficiency.
基金Supported by the National Natural Science Foundation of China(61773205,61773219)the Fundamental Research Funds for the Central Universities(NS2016032,NS2019018,Nanjing University of Aeronautics and Astronautics)+1 种基金the Scholarship from China Scholarship Council(201906835020)the Fundamental Research Funds for the Central Universities(the Graduate Student Innovation Base Open Fund Project of NUAA,kfjj20190307)。
文摘Recently,vision-based gesture recognition(VGR)has become a hot research spot in human-computer interaction(HCI).Unlike other gesture recognition methods with data gloves or other wearable sensors,vision-based gesture recognition could lead to more natural and intuitive HCI interactions.This paper reviews the state-of-the-art vision-based gestures recognition methods,from different stages of gesture recognition process,i.e.,(1)image acquisition and pre-processing,(2)gesture segmentation,(3)gesture tracking,(4)feature extraction,and(5)gesture classification.This paper also analyzes the advantages and disadvantages of these various methods in detail.Finally,the challenges of vision-based gesture recognition in haptic rendering and future research directions are discussed.
文摘With the popularity of new intelligent mobile devices in people’s lives,the development of mobile applications has paid increasing attention to the interactive experience of users.As the content of traditional Human-Computer Interaction(HCI)course and teaching material is out of date,it cannot meet the needs of mobile application interaction design and enterprises for students.Therefore,we need a new generation HCI course based on intelligent mobile devices to study the relationship between users and systems.The HCI course not only teaches students HCI theory and model,but also needs to cultivate students’interaction-oriented design practical ability.This paper proposes a set of HCI teaching material design and teaching methods for improving HCI class quality on mobile application interaction design,so as to make students more suitable for the employment requirements of enterprises.
文摘Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.
基金supported by the China Fundamental Research Funds for the Central Universities(2022JBQY006)。
文摘Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies.
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
基金the Science and Technology Projects of Liaoning Province(No.2012219020)the China Postdoctoral Science Foundation(No.2013M541249)
文摘This paper addresses the issue of reciprocating compressors staggered labyrinth seal structure. The internal flow field of sealed structure, the displacement of cylinder and piston for different tooth profile angles are analyzed synchronously using FLUENT software, and the effects of fluid-structure interaction on the performance of the labyrinth seal are revealed. The results indicate that with the growth of tooth profile angle, the leakage rate of labyrinth seal tends to decrease first, and then increase. The results of fluid-structure interaction analysis are close to those of actual engineering. The effect of fluid-structure interaction makes tiny deformation in calculation mesh of piston and cylinder structure, and the coupling interaction affects the performance of the labyrinth seal.
基金financially supported by the National Natural Science Foundation of China(No.51301094)
文摘The shear stress field proximity to the twinning and prismatic/basal interfaces of {1012} tensile twins is shown by molecular dynamics simulations.The stress field interacts and influences the twinning growth mode in the subsequent deformation process,which is simulated by changing the relative positions of the nuclei.An asymmetrical growth mode appears,in which the growth of one twin is predominant over the other when they are oriented at 45° to each other.This growth mode is sensitive to the simulation temperature and strain rate and can be attributed to the interaction of the stress field proximity to the prismatic/basal interfaces and twinning planes.
文摘Pairwise thermal entanglement in a three-qubit Heisenberg XX model is investigated when a nonuniform mag- netic field and the Dzyaloshinski-Moriya interaction are included. We find that the nonuniform magnetic field and Dzyaloshinski-Moriya interaction are the more efficient control parameters for the increase of entanglement and critical temperature. For both the nearest neighbour sites and the next nearest neighbour sites, the magnetic field can induce entanglement to a certain extent and the Dzyaloshinski-Moriya interaction can enhance the entanglement to a stable value. The steady value of the nearest neighbour site entanglement C12 is larger than the next nearest neighbour site entanglement C13. An interesting phenomenon is that the entanglement curve of C12 appears a peak value when the Dzyaloshinski-Moriya interaction is considered in a nonuniform magnetic field.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA05110102)the National Natural Science Foundation of China (Grant No.41075062)the National Basic Research Program of China (Grant No. 2010CB951001)
文摘To improve current understanding of the water cycle,energy partitioning and CO2 exchange over hilly zone vegetative land surfaces in the subtropical monsoon environment of southern China,a long-term field experiment observatory was set up at Ningxiang,eastern Hunan Province.This paper presents a preliminary analysis of the field observations at the observatory collected from August to November 2012.Results show that significant diurnal variations in soil temperature occur only in shallow soil layers(0.05,0.10,and 0.20 m),and that heavy rainfall affects soil moisture in the deep layers(≥ 0.40 m).During the experimental period,significant diurnal variations in albedo,radiation components,energy components,and CO2 flux were observed,but little seasonal variation.Strong photosynthesis in the vegetation canopy enhanced the CO2 absorption and the latent heat released in daylight hours;Latent heat of evaporation was the main consumer of available energy in late summer.Because the field experiment data are demonstrably reliable,the observatory will provide reliable long-term measurements for future investigations of the land-atmosphere interaction over hilly land surfaces in the subtropical monsoon region of southern China.
基金supported by the Ministry of Science and Technology of China (2010DFA32680)the National Natural Science Foundation of China (21005062)the Fundamental Research Funds for the Central Universities (CDJRC10220010)
文摘Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.
文摘In the article “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” the gravitational interaction between mass particles at rest has been explained by the hypothesis that g-information carried by informatons is the substance of the medium that the interaction in question makes possible. It has been showed that, on the macroscopic level, that medium—the “gravitational field”—manifests itself as the vector field Eg. In this article we will deduce from the postulate of the emission of informatons, that the informatons emitted by a moving mass particle carry not only information about the position (g-information) but also about the velocity (“β-information”) of their emitter. It follows that the gravitational field of a moving mass particle is a dual entity always having a field- and an induction-component (Egand Bg) simultaneously created by their common sources: time-variable masses and mass flows and that the gravitational interaction is the effect of the fact that an object in a gravitational field always tends to become “blind” for that field by accelerating according to a Lorentz-like law.