期刊文献+
共找到3,991篇文章
< 1 2 200 >
每页显示 20 50 100
Quantitative principles of dynamic interaction between rock support and surrounding rock in rockburst roadways 被引量:2
1
作者 Lianpeng Dai Dingjie Feng +4 位作者 Yishan Pan Aiwen Wang Ying Ma Yonghui Xiao Jianzhuo Zhang 《International Journal of Mining Science and Technology》 2025年第1期41-55,共15页
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe... Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices. 展开更多
关键词 Deep roadway ROCKBURST dynamic interaction Rock support Surrounding rock Rockburst control
在线阅读 下载PDF
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
2
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
在线阅读 下载PDF
Rheological behaviors of Na-montmorillonite considering particle interactions:A molecular dynamics study
3
作者 Siqi Zhang Daoyuan Tan +2 位作者 Honghu Zhu Huafu Pei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4657-4671,共15页
Understanding the rheology of bentonite suspensions is crucial for ensuring the safety of engineering practices.However,the rheological mechanisms of bentonite remain unclear due to the limitations of conventional exp... Understanding the rheology of bentonite suspensions is crucial for ensuring the safety of engineering practices.However,the rheological mechanisms of bentonite remain unclear due to the limitations of conventional experimental techniques,particularly in assessing the microscopic interactions between clay particles and their impact on rheological properties.In this paper,the rheological behaviors of Namontmorillonite were studied with a focus on interparticle interactions.Both equilibrium molecular dynamics(MD)and non-equilibrium MD simulations were conducted to understand the physical properties of Na-montmorillonite under zero shear and various shear rates,respectively.The interaction between two parallel clay particles was determined in simulations,indicating that the classical Darjaguin-Landau-Verwey-Overbeek(DLVO)theory underestimates the interactions for a small separation distance.Na-montmorillonite exhibits a typical shear thinning behavior under shearing.However,as water content increases,it begins to behave more like liquid water.The yield stress of montmorillonite,as determined by the Bingham model,was found to be linearly related to the interaction pressures between clay particles.Besides MD simulations,the microstructure of clay suspension was further quantified using the separation distance and incline angle between non-parallel clay particles.Based on MD results and the quantified clay structure,a model was developed to estimate the yield stress of montmorillonite considering various influence factors,including electrolyte concentration,temperature,and solid fraction.Finally,from a comparison with calculated and experimental data,the results confirm the good performance of the proposed model.These findings provide significant insights for understanding the rheological soil behaviors and evaluating the yield stress of bentonite suspensions. 展开更多
关键词 Rheological behavior Yield stress Molecular dynamics Particle interactions Darjaguin-Landau-Verwey-Overbeek(DLVO)theory Microstructure Montmorillonite suspension
在线阅读 下载PDF
Intelligent human-computer interactive training assistant system for rail systems
4
作者 Yuexuan Li Junhua Chen +1 位作者 Xiangyong Luo Han Zheng 《High-Speed Railway》 2025年第1期64-77,共14页
In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operati... In recent years,railway construction in China has developed vigorously.With continuous improvements in the highspeed railway network,the focus is gradually shifting from large-scale construction to large-scale operations.However,several challenges have emerged within the high-speed railway dispatching and command system,including the heavy workload faced by dispatchers,the difficulty of quantifying subjective expertise,and the need for effective training of professionals.Amid the growing application of artificial intelligence technologies in railway systems,this study leverages Large Language Model(LLM)technology.LLMs bring enhanced intelligence,predictive capabilities,robust memory,and adaptability to diverse real-world scenarios.This study proposes a human-computer interactive intelligent scheduling auxiliary training system built on LLM technology.The system offers capabilities including natural dialogue,knowledge reasoning,and human feedback learning.With broad applicability,the system is suitable for vocational education,guided inquiry,knowledge-based Q&A,and other training scenarios.Validation results demonstrate its effectiveness in auxiliary training,providing substantial support for educators,students,and dispatching personnel in colleges and professional settings. 展开更多
关键词 High-speed railway Dispatch training assistance Large language model human-computer interactive training assistant system Reinforcement learning
在线阅读 下载PDF
Dynamic modeling of cavitation bubble clusters:Effects of evaporation,condensation,and bubble-bubble interaction 被引量:2
5
作者 许龙 姚昕锐 沈阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期527-535,共9页
We present a dynamic model of cavitation bubbles in a cluster,in which the effects of evaporation,condensation,and bubble-bubble interactions are taken into consideration.Under different ultrasound conditions,we exami... We present a dynamic model of cavitation bubbles in a cluster,in which the effects of evaporation,condensation,and bubble-bubble interactions are taken into consideration.Under different ultrasound conditions,we examine how the dynamics of cavitation bubbles are affected by several factors,such as the locations of the bubbles,the ambient radius,and the number of bubbles.Herein the variations of bubble radius,energy,temperature,pressure,and the quantity of vapor molecules are analyzed.Our findings reveal that bubble-bubble interactions can restrict the expansion of bubbles,reduce the exchange of energy among vapor molecules,and diminish the maximum internal temperature and pressure when bursting.The ambient radius of bubbles can influence the intensities of their oscillations,with clusters comprised of smaller bubbles creating optimal conditions for generating high-temperature and high-pressure regions.Moreover,an increase in the number of bubbles can further inhibit cavitation activities.The frequency,pressure and waveform of the driving wave can also exert a significant influence on cavitation activities,with rectangular waves enhancing and triangular waves weakening the cavitation of bubbles in the cluster.These results provide a theoretical basis for understanding the dynamics of cavitation bubbles in a bubble cluster,and the factors that affect their behaviors. 展开更多
关键词 bubble dynamics bubble-bubble interaction mass exchange ultrasound waveform
原文传递
Numerical Study on the Aerodynamic and Fluid−Structure Interaction of An NREL-5MW Wind Turbine 被引量:1
6
作者 ZHAO Mi YU Wan-li +2 位作者 WANG Pi-guang QU Yang DU Xiu-li 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期363-378,共16页
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ... A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model. 展开更多
关键词 computational fluid dynamics methods(CFD) tower shadow effect aerodynamic performance fluidstructure interaction space flow field
在线阅读 下载PDF
Numerical Investigation on Dynamic Response Characteristics of Fluid-Structure Interaction of Gas-Liquid Two-Phase Flow in Horizontal Pipe 被引量:1
7
作者 王志伟 何炎平 +4 位作者 李铭志 仇明 黄超 刘亚东 王梓 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期237-244,共8页
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat... Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions. 展开更多
关键词 gas-liquid two-phase flow volume of fluid model fluid-structure interaction(FSI) dynamic response characteristics
原文传递
Dynamic constraint and objective generation approach for real-time train rescheduling model under human-computer interaction
8
作者 Kai Liu Jianrui Miao +2 位作者 Zhengwen Liao Xiaojie Luan Lingyun Meng 《High-Speed Railway》 2023年第4期248-257,共10页
Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates... Real-time train rescheduling plays a vital role in railway transportation as it is crucial for maintaining punctuality and reliability in rail operations.In this paper,we propose a rescheduling model that incorporates constraints and objectives generated through human-computer interaction.This approach ensures that the model is aligned with practical requirements and daily operational tasks while facilitating iterative train rescheduling.The dispatcher’s empirical knowledge is integrated into the train rescheduling process using a human-computer interaction framework.We introduce six interfaces to dynamically construct constraints and objectives that capture human intentions.By summarizing rescheduling rules,we devise a rule-based conflict detection-resolution heuristic algorithm to effectively solve the formulated model.A series of numerical experiments are presented,demonstrating strong performance across the entire system.Furthermore,theflexibility of rescheduling is enhanced through secondary analysis-driven solutions derived from the outcomes of humancomputer interactions in the previous step.This proposed interaction method complements existing literature on rescheduling methods involving human-computer interactions.It serves as a tool to aid dispatchers in identifying more feasible solutions in accordance with their empirical rescheduling strategies. 展开更多
关键词 Real-time train rescheduling human-computer interaction Rule-based heuristic algorithm Secondary rescheduling
在线阅读 下载PDF
Study of the Relationship Between New Ionic Interaction Parameters and Salt Solubility in Electrolyte Solutions Based on Molecular Dynamics Simulation
9
作者 SUN Wenting HU Yangdong +5 位作者 ZHENG Jiahuan SUN Qichao Chen Xia DING Jiakun ZHANG Weitao WU Lianying 《Journal of Ocean University of China》 CAS CSCD 2024年第2期467-476,共10页
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is... Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions. 展开更多
关键词 molecular dynamics simulation interaction distance interaction time rate electrolyte aqueous solutions SOLUBILITY
在线阅读 下载PDF
Probing the interaction between asphaltene-wax and its effects on the crystallization behavior of waxes in heavy oil via molecular dynamics simulation
10
作者 Yong Hu Xi Lu +3 位作者 Hai-Bo Wang Ji-Chao Fang Yi-Ning Wu JianFang Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2839-2848,共10页
High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mecha... High content of asphaltenes and waxes leads to the high pour point and the poor flowability of heavy oil,which is adverse to its efficient development and its transportation in pipe.Understanding the interaction mechanism between asphaltene-wax is crucial to solve these problems,but it is still unclear.In this paper,molecular dynamics simulation was used to investigate the interaction between asphaltenewax and its effects on the crystallization behavior of waxes in heavy oil.Results show that molecules in pure wax are arranged in a paralleled geometry.But wax molecules in heavy oil,which are close to the surface of asphaltene aggregates,are bent and arranged irregularly.When the mass fraction of asphaltenes in asphaltene-wax system(ω_(asp))is 0-25 wt%,the attraction among wax molecules decreases and the bend degree of wax molecules increases with the increase ofω_(asp).Theω_(asp)increases from 0 to 25 wt%,and the attraction between asphaltene-wax is stronger than that among waxes.This causes that the wax precipitation point changes from 353 to 333 K.While theω_(asp)increases to 50 wt%,wax molecules are more dispersed owing to the steric hindrance of asphaltene aggregates,and the interaction among wax molecules transforms from attraction to repulsion.It causes that the ordered crystal structure of waxes can't be formed at normal temperature.Simultaneously,the asphaltene,with the higher molecular weight or the more hetero atoms,has more obvious inhibition to the formation of wax crystals.Besides,resins also have an obvious inhibition on the wax crystal due to the formation of asphalteneresin aggregates with a larger radius.Our results reveal the interaction mechanism between asphaltene-wax,and provide useful guidelines for the development of heavy oil. 展开更多
关键词 Heavy oil interaction mechanism ASPHALTENES Waxes Molecular dynamics
原文传递
Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer
11
作者 徐耀 黄舒伟 +1 位作者 丁泓铭 马余强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期512-521,共10页
Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,... Recently,lipid nanoparticles(LNPs)have been extensively investigated as non-viral carriers of nucleic acid vaccines due to their high transport efficiency,safety,and straightforward production and scalability.However,the molecular mechanism underlying the interactions between nucleic acids and phospholipid bilayers within LNPs remains elusive.In this study,we employed the all-atom molecular dynamics simulation to investigate the interactions between single-stranded nucleic acids and a phospholipid bilayer.Our findings revealed that hydrophilic bases,specifically G in single-stranded RNA(ssRNA)and single-stranded DNA(ssDNA),displayed a higher propensity to form hydrogen bonds with phospholipid head groups.Notably,ssRNA exhibited stronger binding energy than ssDNA.Furthermore,divalent ions,particularly Ca2+,facilitated the binding of ssRNA to phospholipids due to their higher binding energy and lower dissociation rate from phospholipids.Overall,our study provides valuable insights into the molecular mechanisms underlying nucleic acidphospholipid interactions,with potential implications for the nucleic acids in biotherapies,particularly in the context of lipid carriers. 展开更多
关键词 RNA DNA lipid bilayer molecular dynamics interface interaction divalent cation
原文传递
Risk identification and safety assessment of human-computer interaction in integrated avionics based on STAMP
12
作者 ZHAO Changxiao LI Hao +2 位作者 ZHANG Wei DAI Jun DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期689-706,共18页
To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA... To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety. 展开更多
关键词 AVIONICS human-computer interaction(HCI) safety assessment system-theoretic accident model and process human reliability analysis
在线阅读 下载PDF
Identification and distribution of 13003 landslides in the northwest margin of Qinghai-Tibet Plateau based on human-computer interaction remote sensing interpretation
13
作者 Wei Wang Yuan-dong Huang +8 位作者 Chong Xu Xiao-yi Shao Lei Li Li-ye Feng Hui-ran Gao Yu-long Cui Shuai Wu Zhi-qiang Yang Kai Ma 《China Geology》 CAS CSCD 2024年第2期171-187,共17页
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai... The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Xizang Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area. 展开更多
关键词 LANDSLIDES human-computer interaction interpretation Landslide database Spatial distribution Earthquake RAINFALL Human engineering activity Qinghai-Tibet Plateau Geological hazards survey engineering
在线阅读 下载PDF
EVOLUTION AND INTERACTION OF δ-WAVES IN THE ZERO-PRESSURE GAS DYNAMICS SYSTEM
14
作者 Abhishek DAS K.T.JOSEPH 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1801-1836,共36页
Evolution and interaction of plane waves of the multidimensional zero-pressure gas dynamics system leads to the study of the corresponding one dimensional system.In this paper,we study the initial value problem for on... Evolution and interaction of plane waves of the multidimensional zero-pressure gas dynamics system leads to the study of the corresponding one dimensional system.In this paper,we study the initial value problem for one dimensional zero-pressure gas dynamics system.Here the first equation is the Burgers equation and the second one is the continuity equation.We consider the solution with initial data in the space of bounded Borel measures.First we prove a general existence result in the algebra of generalized functions of Colombeau.Then we study in detail special solutions withδ-measures as initial data.We study interaction of waves originating from initial data concentrated on two point sources and interaction with classical shock/rarefaction waves.This gives an understanding of plane-wave interactions in the multidimensional case.We use the vanishing viscosity method in our analysis as this gives the physical solution. 展开更多
关键词 zero-pressure gas dynamics delta-waves interaction of waves
在线阅读 下载PDF
Multi-Body Dynamics Modeling of Heavy Goods Vehicle-Rail Interaction
15
作者 Lili Liu Jianhua Liu Jihong Zuo 《Open Journal of Applied Sciences》 2024年第7期1715-1722,共8页
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes... Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling. 展开更多
关键词 Vehicle-Rail Coupling dynamic Modeling Wheel-Rail interaction Forces
在线阅读 下载PDF
A Rapid Adaptation Approach for Dynamic Air‑Writing Recognition Using Wearable Wristbands with Self‑Supervised Contrastive Learning
16
作者 Yunjian Guo Kunpeng Li +4 位作者 Wei Yue Nam‑Young Kim Yang Li Guozhen Shen Jong‑Chul Lee 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期417-431,共15页
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the pro... Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication. 展开更多
关键词 Wearable wristband Self-supervised contrastive learning dynamic gesture Air-writing Human-machine interaction
在线阅读 下载PDF
Estimation of peer pressure in dynamic homogeneous social networks
17
作者 Jie Liu Pengyi Wang +1 位作者 Jiayang Zhao Yu Dong 《中国科学技术大学学报》 北大核心 2025年第5期36-49,35,I0001,I0002,共17页
Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision p... Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model. 展开更多
关键词 dynamic network game theory HOMOGENEITY peer pressure social interaction
在线阅读 下载PDF
Numerical Modeling of Ship-Ice-Water Interaction for Freerunning Ships in Pack Ice
18
作者 ZOU Ming ZOU Zao−jian +1 位作者 ZOU Lu ZHU Sheng−tao 《船舶力学》 北大核心 2025年第6期878-887,共10页
Ice-going ships play a crucial role in polar transportation and resource extraction.Different from the existing modeling approach which assumes that ships remain stationary,dynamic overset grid technology and DFBI(Dyn... Ice-going ships play a crucial role in polar transportation and resource extraction.Different from the existing modeling approach which assumes that ships remain stationary,dynamic overset grid technology and DFBI(Dynamic Fluid-Body Interaction)method are employed in this paper to enable the free-running motion of the ship in modeling.A numerical model capable of simulating a ship navigating through pack ice area is proposed,which uses Computational Fluid Dynamics(CFD)method to solve the flow field and applies the Discrete Element Method(DEM)to simulate ship-ice and ice-ice interactions.Besides,the proposed high-precision method for generating pack ice area can be used in conjunction with the proposed numerical model.By comparing the numerical results with the available model test data and experimental observations,the effectiveness of the numerical model is validated,demonstrating its strong capability of predicting resistance and simulating ship navigation in pack ice,as well as its significant potential and applicability for further studies. 展开更多
关键词 pack ice ship-ice-water interaction CFD-DEM dynamic overset grid technology ship resistance
在线阅读 下载PDF
A haptic feedback glove for virtual piano interaction
19
作者 Yifan FU Jialin LIU +1 位作者 Xu LI Xiaoying SUN 《虚拟现实与智能硬件(中英文)》 2025年第1期95-110,共16页
Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in v... Background Haptic feedback plays a crucial role in virtual reality(VR)interaction,helping to improve the precision of user operation and enhancing the immersion of the user experience.Instrumental haptic feedback in virtual environments is primarily realized using grounded force or vibration feedback devices.However,improvements are required in terms of the active space and feedback realism.Methods We propose a lightweight and flexible haptic feedback glove that can haptically render objects in VR environments via kinesthetic and vibration feedback,thereby enabling users to enjoy a rich virtual piano-playing experience.The kinesthetic feedback of the glove relies on a cable-pulling mechanism that rotates the mechanism and pulls the two cables connected to it,thereby changing the amount of force generated to simulate the hardness or softness of the object.Vibration feedback is provided by small vibration motors embedded in the bottom of the fingertips of the glove.We designed a piano-playing scenario in the virtual environment and conducted user tests.The evaluation metrics were clarity,realism,enjoyment,and satisfaction.Results A total of 14 subjects participated in the test,and the results showed that our proposed glove scored significantly higher on the four evaluation metrics than the nofeedback and vibration feedback methods.Conclusions Our proposed glove significantly enhances the user experience when interacting with virtual objects. 展开更多
关键词 Wearable device human-computer interaction Virtual reality Haptic feedback
在线阅读 下载PDF
Suspended monorail system dynamics:fundamental and practice
20
作者 Wanming Zhai Qinglie He +1 位作者 Yulong Bao Chengbiao Cai 《Railway Engineering Science》 2025年第3期379-413,共35页
Urban transportation systems are facing severe challenges due to the rapid growth of the urban population,especially in China.Suspended monorail system(SMS),as a sky rail transportation form,can effectively alleviate ... Urban transportation systems are facing severe challenges due to the rapid growth of the urban population,especially in China.Suspended monorail system(SMS),as a sky rail transportation form,can effectively alleviate urban traffic congestion due to its independent right-of-way and minimal ground footprint.However,the SMS possesses a special traveling system with unique vehicle structure and bridge configuration,which results in significant differences in both the mechanisms and dynamics problems associated with train–bridge interaction(TBI)when contrasted with those of traditional railway systems.Therefore,a thorough understanding of the SMS dynamics is essential for ensuring the operational safety of the system.This article presents a state-of-the-art review of the TBI modeling methodologies,critical dynamic features,field tests,and practice of the SMS in China.Firstly,the development history,technical features,and potential dynamics problems of the SMS are briefly described,followed by the mechanical characteristics and mechanisms of the train–bridge interactive systems.Then,the modeling methodology of the fundamental elements in the suspended monorail TBI is systematically reviewed,including the suspended train subsystem,bridge subsystem,train–bridge interaction relationships,system excitations,and solution method.Further,the typical dynamic features of the TBI under various operational scenarios are elaborated,including different train speeds,a variety of line sections,and a natural wind environment.Finally,the first new energy-based SMS test line in the world is systematically introduced,including the composition and functionality of the system,the details of the conducted field tests,and the measured results of the typical dynamic responses.At the end of the paper,both the guidance on further improvement of the SMS and future research topics are proposed. 展开更多
关键词 Suspended monorail system Train-bridge dynamic interaction Modeling methodology Experimental investigation dynamic features CROSSWIND
在线阅读 下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部