Single Pilot Operations(SPO),as a NextGen concept of operation,can save both crew costs and human resources for airlines,and has attracted the attention of aviation researchers.To explore in advance the problems that ...Single Pilot Operations(SPO),as a NextGen concept of operation,can save both crew costs and human resources for airlines,and has attracted the attention of aviation researchers.To explore in advance the problems that the introduction of SPO into the aviation system would bring,the Human-Centered Design(HCD)approach has been widely used in the development of SPO.A systematic review of the progress of HCD approach in SPO research can promote further development of SPO.In this paper,the literature resources of SPO were firstly retrieved from scientific research databases by subject search and were used as the input of scientometric analysis to obtain the highly cited literature,the number of annual publications,and the co-authorship network,which enables readers to understand the research trends and research groups of current SPO.Secondly,the development,application,and research process of the HCD approach were introduced in detail,and the progress of the HCD approach in SPO research was reviewed systematically from three aspects:concept design,function allocation,and system evaluation.Finally,limitations of current SPO research and future research directions for applying the HCD approach to SPO were also discussed.展开更多
With the development of mechanization popularity in rural area, agricultural machinery product not only needs to meet the production goals, and also requires the simple operation and human-centered. Human-centered des...With the development of mechanization popularity in rural area, agricultural machinery product not only needs to meet the production goals, and also requires the simple operation and human-centered. Human-centered design is always, on the basis of the user' s requirement and usage, to think over the issues by regarding operator as the center, and to design the products by emphasizing the ease of use and understandability during design and manufacture. In this study, Stubble-Mulch Rotocultivator for Boat Tractor (SMRBT) is chosen as the design object. The coordination approach of the user, machine and environment is discussed by deeply investigating their relationship, which is an empirical study of the human-centered technology of agricultural machinery.展开更多
This paper first introduces the development process of urban street green landscape in China and the human-centered thinking of the design of urban street green landscape.On the basis of detailed elaboration of the ba...This paper first introduces the development process of urban street green landscape in China and the human-centered thinking of the design of urban street green landscape.On the basis of detailed elaboration of the basic theories of urban street green landscape,it analyzes the existing problems and causes for urban street green landscape.Then,from the perspective of human-centered thought,it comes up with several measures for optimizing the green landscape design of urban streets,to provide much more human-centered experience of urban street green landscape.展开更多
As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social syste...As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape.展开更多
In the context of Industry 5.0,more emphasis is placed on human-centric smart manufacturing patterns.Product design is a vital phase of smart manufacturing,involving user engagement is an essential factor in enhancing...In the context of Industry 5.0,more emphasis is placed on human-centric smart manufacturing patterns.Product design is a vital phase of smart manufacturing,involving user engagement is an essential factor in enhancing design quality and fostering innovation.With user involvement in-depth,dynamically changing user requirements and feedback bring new problems to the design process,and the traditional linear solving process cannot perceive such variations timely,which causes hysteresis in the solution.The design solution's hysteresis affects the consensus achievement process between the designer and user,further prolonging the iteration cycle.To address this issue,a human-centric product conceptual design model is proposed for the timely translation of such variations into design solutions.In this model,design problems are formed by centering on user requirements,designer and user collaboratively solve the problems to form design solutions.Through a cycle of problem-driven,knowledgesupported,and solution evaluation,new problems are solved promptly to achieve progressive solution convergence,which clarifies the iterative evolution process and improves iterative efficiency.To verify the effectiveness of the model,a natural gas well foaming agent automatic filling device design is presented.展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honey...In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.展开更多
To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of ...To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of view and operates at both visible and near-infrared wavelengths.Using the principles of light field imaging,the proposed design enables 3D reconstruction of optical surfaces,thus enabling vertical surface height measurements with enhanced accuracy.Using Zemax-based simulations,we evaluate the system’s modulation transfer function,its optical aberrations,and its tolerance to shape variations through Zernike coefficient adjustments.The results demonstrate that this camera can achieve the required spatial resolution while also maintaining high imaging quality and thus offers a promising solution for advanced optical surface defect inspection.展开更多
Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI ...Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward.展开更多
The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,t...The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,the development of EM shielding devices with high green shielding index(gs)is essential,as they offer absorption-dominant protection that minimizes reflections and safeguards both health and electronics.MXene,with its intrinsic ultra-high electrical conductivity,liquid-phase tunable surface chemistry,low density,large specific surface area,thermal stability,and mechanical stability,has become the leading two-dimensional(2D)material driving the development of green EM shielding devices.In this review we emphasize device-level strategies with engineered architectures for MXene-based green EM shielding.We first examine MXene’s crystal and electronic structure and the fundamental attenuation mechanisms in MXene-based devices.Then we survey fabrication and assembly methods,analyzing three device-level strategies for MXene-based green EM shielded devices:3D architectures,metastructure/meta-surfaces,and external stimulus.Throughout,we highlight how MXene’s distinguished properties enable green EM interference(EMI)shielding devices that minimize secondary interference.Finally,we discuss the challenges faced in the effective utilization of MXene-based in green EM shielding devices,provide insights into these challenges,and offer guidelines for developing the solutions of next-generation green MXene-based EM shielding devices.展开更多
To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capabl...To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.展开更多
Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical si...Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.展开更多
Subcritical reactors(SCRs)or subcritical assemblies(SCAs)are the main infrastructure for designing power reactors.These reactors are widely used for training and research because of their high level of inherent safety...Subcritical reactors(SCRs)or subcritical assemblies(SCAs)are the main infrastructure for designing power reactors.These reactors are widely used for training and research because of their high level of inherent safety.The objective of this study is to design a subcritical reactor using a pressurized water reactor(PWR)conventional fuel following two safety points.In the first approach,deeply placed SCR cores with an infinite multiplication factor(k_(∞))of less than unity were identified using the DRAGON lattice code.In the second approach,subcritical reactor cores with an effective multiplication factor(k_(eff))of less than unity were determined by coupling the cell calculations of the DRAGON lattice code and core calculations of the DONJON code.For the deeply subcritical reactor design,it was found that the reactor would remain inherently subcritical while using fuel rods with ^(235)U enrichment of up to 0.9%,regardless of the pitch of the fuel rods.In the second approach,the optimal pitches(1.3 to 2.3 cm)were determined for different fuel enrichment values from 1 to 5%.Subsequently,the k_(eff) was obtained for a fuel rod arrangement of 8×8 to 80×80,and the states in which the reactor would be subcritical were determined for different fuel enrichments at the corresponding optimal pitch.To validate the models used in the DRAGON and DONJON codes,the k_(eff) of the Isfahan Light Water Subcritical Reactor(LWSCR)was experimentally measured and compared with the results of the calculations.Finally,the effects of fuel and moderator temperature changes were investigated to ensure that the designed assemblies remained in the subcritical state at all operational temperatures.展开更多
Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important r...Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important research field that spans all of the robot capabilities including navigation, intelligent control, pattern recognition and human-robot interaction. This paper focuses on the recent achievements and presents a survey of existing works on human-centered robots. Furthermore, we provide a comprehensive survey of the recent development of the human-centered intelligent robot and discuss the issues and challenges in the field.展开更多
Although there are certain differences in the center of gravity between rural revitalization and human-centered urbanization,their connotations and goals require that both must be promoted in concert.Therefore,based o...Although there are certain differences in the center of gravity between rural revitalization and human-centered urbanization,their connotations and goals require that both must be promoted in concert.Therefore,based on a deep understanding of the connotation of rural revitalization and human-centered urbanization,it is necessary to clarify the goals of the two through the two-way flow of elements between urban and rural areas,the urban-rural linkage of industries,to achieve coordinated promotion of rural revitalization and human-centered urbanization in China.展开更多
The special issue aims to address a broad spectrum of topics ranging from human-centered intelligent robots acting as a servant,secretary,or companion to intelligent robotic functions.The special issue publishes origi...The special issue aims to address a broad spectrum of topics ranging from human-centered intelligent robots acting as a servant,secretary,or companion to intelligent robotic functions.The special issue publishes original papers of innovative ideas and concepts,new discoveries,and novel applications and business models relevant to the field of human-centered intelligent robots.In this special issue,modeling,intelligent control,展开更多
基金This research was funded by the Natural Science Foundation of Shanghai,China(No.20ZR1427800)the New Young Teachers Launch Program of Shanghai Jiao Tong University,China(No.20X100040036).
文摘Single Pilot Operations(SPO),as a NextGen concept of operation,can save both crew costs and human resources for airlines,and has attracted the attention of aviation researchers.To explore in advance the problems that the introduction of SPO into the aviation system would bring,the Human-Centered Design(HCD)approach has been widely used in the development of SPO.A systematic review of the progress of HCD approach in SPO research can promote further development of SPO.In this paper,the literature resources of SPO were firstly retrieved from scientific research databases by subject search and were used as the input of scientometric analysis to obtain the highly cited literature,the number of annual publications,and the co-authorship network,which enables readers to understand the research trends and research groups of current SPO.Secondly,the development,application,and research process of the HCD approach were introduced in detail,and the progress of the HCD approach in SPO research was reviewed systematically from three aspects:concept design,function allocation,and system evaluation.Finally,limitations of current SPO research and future research directions for applying the HCD approach to SPO were also discussed.
文摘With the development of mechanization popularity in rural area, agricultural machinery product not only needs to meet the production goals, and also requires the simple operation and human-centered. Human-centered design is always, on the basis of the user' s requirement and usage, to think over the issues by regarding operator as the center, and to design the products by emphasizing the ease of use and understandability during design and manufacture. In this study, Stubble-Mulch Rotocultivator for Boat Tractor (SMRBT) is chosen as the design object. The coordination approach of the user, machine and environment is discussed by deeply investigating their relationship, which is an empirical study of the human-centered technology of agricultural machinery.
文摘This paper first introduces the development process of urban street green landscape in China and the human-centered thinking of the design of urban street green landscape.On the basis of detailed elaboration of the basic theories of urban street green landscape,it analyzes the existing problems and causes for urban street green landscape.Then,from the perspective of human-centered thought,it comes up with several measures for optimizing the green landscape design of urban streets,to provide much more human-centered experience of urban street green landscape.
基金supported by the National Key Research and Development Program of China(2021YFB1714300)the National Natural Science Foundation of China(62233005,U2441245,62173141)+3 种基金CNPC Innovation Found(2024DQ02-0507)Shanghai Natural Science(24ZR1416400)Shanghai Baiyu Lan Talent Program Pujiang Project(24PJD020)the Programme of Introducing Talents of Discipline to Universities(the 111 Project)(B17017)
文摘As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape.
基金Supported by National Natural Science Foundation of China(Grant No.52405285)the Sichuan University Young Teachers'Capacity Improvement Program in Science and Technology Innovation(Grant No.2024SCUQJTX026)Sichuan Provincial Engineering Technology Research Center of Broadband Electronics Intelligent Manufacturing(Grant No.BEIM2022A001)。
文摘In the context of Industry 5.0,more emphasis is placed on human-centric smart manufacturing patterns.Product design is a vital phase of smart manufacturing,involving user engagement is an essential factor in enhancing design quality and fostering innovation.With user involvement in-depth,dynamically changing user requirements and feedback bring new problems to the design process,and the traditional linear solving process cannot perceive such variations timely,which causes hysteresis in the solution.The design solution's hysteresis affects the consensus achievement process between the designer and user,further prolonging the iteration cycle.To address this issue,a human-centric product conceptual design model is proposed for the timely translation of such variations into design solutions.In this model,design problems are formed by centering on user requirements,designer and user collaboratively solve the problems to form design solutions.Through a cycle of problem-driven,knowledgesupported,and solution evaluation,new problems are solved promptly to achieve progressive solution convergence,which clarifies the iterative evolution process and improves iterative efficiency.To verify the effectiveness of the model,a natural gas well foaming agent automatic filling device design is presented.
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金the financial supports from National Key R&D Program for Young Scientists of China(Grant No.2022YFC3080900)National Natural Science Foundation of China(Grant No.52374181)+1 种基金BIT Research and Innovation Promoting Project(Grant No.2024YCXZ017)supported by Science and Technology Innovation Program of Beijing institute of technology under Grant No.2022CX01025。
文摘In this study,an inverse design framework was established to find lightweight honeycomb structures(HCSs)with high impact resistance.The hybrid HCS,composed of re-entrant(RE)and elliptical annular re-entrant(EARE)honeycomb cells,was created by constructing arrangement matrices to achieve structural lightweight.The machine learning(ML)framework consisted of a neural network(NN)forward regression model for predicting impact resistance and a multi-objective optimization algorithm for generating high-performance designs.The surrogate of the local design space was initially realized by establishing the NN in the small sample dataset,and the active learning strategy was used to continuously extended the local optimal design until the model converged in the global space.The results indicated that the active learning strategy significantly improved the inference capability of the NN model in unknown design domains.By guiding the iteration direction of the optimization algorithm,lightweight designs with high impact resistance were identified.The energy absorption capacity of the optimal design reached 94.98%of the EARE honeycomb,while the initial peak stress and mass decreased by 28.85%and 19.91%,respectively.Furthermore,Shapley Additive Explanations(SHAP)for global explanation of the NN indicated a strong correlation between the arrangement mode of HCS and its impact resistance.By reducing the stiffness of the cells at the top boundary of the structure,the initial impact damage sustained by the structure can be significantly improved.Overall,this study proposed a general lightweight design method for array structures under impact loads,which is beneficial for the widespread application of honeycomb-based protective structures.
基金supported by the Jilin Science and Technology Development Plan(20240101029JJ)the following study:synchronized high-speed detection of surface shape and defects in the grinding stage of complex surfaces(KLMSZZ202305)+3 种基金for the high-precision wide dynamic large aperture optical inspection system for fine astronomical observation by the National Major Research Instrument Development Project(62127901)for ultrasmooth manufacturing technology of large diameter complex curved surface by the National Key R&D Program(2022YFB3403405)for research on the key technology of rapid synchronous detection of surface shape and subsurface defects in the grinding stage of large diameter complex surfaces by the International Cooperation Project(2025010157)The Key Laboratory of Optical System Advanced Manufacturing Technology,Chinese Academy of Sciences(2022KLOMT02-04)also supported this study.
文摘To address the challenges of high-precision optical surface defect detection,we propose a novel design for a wide-field and broadband light field camera in this work.The proposed system can achieve a 50°field of view and operates at both visible and near-infrared wavelengths.Using the principles of light field imaging,the proposed design enables 3D reconstruction of optical surfaces,thus enabling vertical surface height measurements with enhanced accuracy.Using Zemax-based simulations,we evaluate the system’s modulation transfer function,its optical aberrations,and its tolerance to shape variations through Zernike coefficient adjustments.The results demonstrate that this camera can achieve the required spatial resolution while also maintaining high imaging quality and thus offers a promising solution for advanced optical surface defect inspection.
基金supported by the Hong Kong Polytechnic University(1-WZ1Y,1-W34U,4-YWER).
文摘Recent years have witnessed transformative changes brought about by artificial intelligence(AI)techniques with billions of parameters for the realization of high accuracy,proposing high demand for the advanced and AI chip to solve these AI tasks efficiently and powerfully.Rapid progress has been made in the field of advanced chips recently,such as the development of photonic computing,the advancement of the quantum processors,the boost of the biomimetic chips,and so on.Designs tactics of the advanced chips can be conducted with elaborated consideration of materials,algorithms,models,architectures,and so on.Though a few reviews present the development of the chips from their unique aspects,reviews in the view of the latest design for advanced and AI chips are few.Here,the newest development is systematically reviewed in the field of advanced chips.First,background and mechanisms are summarized,and subsequently most important considerations for co-design of the software and hardware are illustrated.Next,strategies are summed up to obtain advanced and AI chips with high excellent performance by taking the important information processing steps into consideration,after which the design thought for the advanced chips in the future is proposed.Finally,some perspectives are put forward.
基金the National Natural Science Foundation of China(No.62304020)supported by the National Key R&D Program of China(No.2023YFB3811300)the National Natural Science Foundation of China(No.52202370).
文摘The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,the development of EM shielding devices with high green shielding index(gs)is essential,as they offer absorption-dominant protection that minimizes reflections and safeguards both health and electronics.MXene,with its intrinsic ultra-high electrical conductivity,liquid-phase tunable surface chemistry,low density,large specific surface area,thermal stability,and mechanical stability,has become the leading two-dimensional(2D)material driving the development of green EM shielding devices.In this review we emphasize device-level strategies with engineered architectures for MXene-based green EM shielding.We first examine MXene’s crystal and electronic structure and the fundamental attenuation mechanisms in MXene-based devices.Then we survey fabrication and assembly methods,analyzing three device-level strategies for MXene-based green EM shielded devices:3D architectures,metastructure/meta-surfaces,and external stimulus.Throughout,we highlight how MXene’s distinguished properties enable green EM interference(EMI)shielding devices that minimize secondary interference.Finally,we discuss the challenges faced in the effective utilization of MXene-based in green EM shielding devices,provide insights into these challenges,and offer guidelines for developing the solutions of next-generation green MXene-based EM shielding devices.
基金funded by the Science and Technology Projects of State Grid Corporation of China(Project No.J2024136).
文摘To ensure an uninterrupted power supply,mobile power sources(MPS)are widely deployed in power grids during emergencies.Comprising mobile emergency generators(MEGs)and mobile energy storage systems(MESS),MPS are capable of supplying power to critical loads and serving as backup sources during grid contingencies,offering advantages such as flexibility and high resilience through electricity delivery via transportation networks.This paper proposes a design method for a 400 V–10 kV Dual-Winding Induction Generator(DWIG)intended for MEG applications,employing an improved particle swarmoptimization(PSO)algorithmbased on a back-propagation neural network(BPNN).A parameterized finite element(FE)model of the DWIG is established to derive constraints on its dimensional parameters,thereby simplifying the optimization space.Through sensitivity analysis between temperature rise and electromagnetic loss of the DWIG,the main factors influencing the machine’s temperature are identified,and electromagnetic loss is determined as the optimization objective.To obtain an accurate fitting function between electromagnetic loss and dimensional parameters,the BPNN is employed to predict the nonlinear relationship between the optimization objective and the parameters.The Latin hypercube sampling(LHS)method is used for random sampling in the FE model analysis for training,testing,and validation,which is then applied to compute the cost function in the PSO.Based on the relationships obtained by the BPNN,the PSO algorithm evaluates the fitness and cost functions to determine the optimal design point.The proposed optimization method is validated by comparing simulation results between the initial design and the optimized design.
基金financially supported by the National Key Research and Development Program of China (2022YFB3706802)。
文摘Automation and intelligence have become the primary trends in the design of investment casting processes.However,the design of gating and riser systems still lacks precise quantitative evaluation criteria.Numerical simulation plays a significant role in quantitatively evaluating current processes and making targeted improvements,but its limitations lie in the inability to dynamically reflect the formation outcomes of castings under varying process conditions,making real-time adjustments to gating and riser designs challenging.In this study,an automated design model for gating and riser systems based on integrated parametric 3D modeling-simulation framework is proposed,which enhances the flexibility and usability of evaluating the casting process by simulation.Firstly,geometric feature extraction technology is employed to obtain the geometric information of the target casting.Based on this information,an automated design framework for gating and riser systems is established,incorporating multiple structural parameters for real-time process control.Subsequently,the simulation results for various structural parameters are analyzed,and the influence of these parameters on casting formation is thoroughly investigated.Finally,the optimal design scheme is generated and validated through experimental verification.Simulation analysis and experimental results show that using a larger gate neck(24 mm in side length) and external risers promotes a more uniform temperature distribution and a more stable flow state,effectively eliminating shrinkage cavities and enhancing process yield by 15%.
文摘Subcritical reactors(SCRs)or subcritical assemblies(SCAs)are the main infrastructure for designing power reactors.These reactors are widely used for training and research because of their high level of inherent safety.The objective of this study is to design a subcritical reactor using a pressurized water reactor(PWR)conventional fuel following two safety points.In the first approach,deeply placed SCR cores with an infinite multiplication factor(k_(∞))of less than unity were identified using the DRAGON lattice code.In the second approach,subcritical reactor cores with an effective multiplication factor(k_(eff))of less than unity were determined by coupling the cell calculations of the DRAGON lattice code and core calculations of the DONJON code.For the deeply subcritical reactor design,it was found that the reactor would remain inherently subcritical while using fuel rods with ^(235)U enrichment of up to 0.9%,regardless of the pitch of the fuel rods.In the second approach,the optimal pitches(1.3 to 2.3 cm)were determined for different fuel enrichment values from 1 to 5%.Subsequently,the k_(eff) was obtained for a fuel rod arrangement of 8×8 to 80×80,and the states in which the reactor would be subcritical were determined for different fuel enrichments at the corresponding optimal pitch.To validate the models used in the DRAGON and DONJON codes,the k_(eff) of the Isfahan Light Water Subcritical Reactor(LWSCR)was experimentally measured and compared with the results of the calculations.Finally,the effects of fuel and moderator temperature changes were investigated to ensure that the designed assemblies remained in the subcritical state at all operational temperatures.
基金supported in part by the National Natural Science Foundation of China(61573147,91520201,61625303,61522302,61761130080)Guangzhou Research Collaborative Innovation Projects(2014Y2-00507)+2 种基金Guangdong Science and Technology Research Collaborative Innovation Projects(20138010102010,20148090901056,20158020214003)Guangdong Science and Technology Plan Project(Application Technology Research Foundation)(2015B020233006)National High-Tech Research and De-velopment Program of China(863 Program)(2015AA042303)
文摘Intelligent techniques foster the dissemination of new discoveries and novel technologies that advance the ability of robots to assist and support humans. The human-centered intelligent robot has become an important research field that spans all of the robot capabilities including navigation, intelligent control, pattern recognition and human-robot interaction. This paper focuses on the recent achievements and presents a survey of existing works on human-centered robots. Furthermore, we provide a comprehensive survey of the recent development of the human-centered intelligent robot and discuss the issues and challenges in the field.
基金Supported by Key Project of Humanities and Social Sciences of Hubei Provincial Education Department——"Research on the Agricultural Supply-side Structural Reform Based on the Integration of Three Rural Industries"(18D031).
文摘Although there are certain differences in the center of gravity between rural revitalization and human-centered urbanization,their connotations and goals require that both must be promoted in concert.Therefore,based on a deep understanding of the connotation of rural revitalization and human-centered urbanization,it is necessary to clarify the goals of the two through the two-way flow of elements between urban and rural areas,the urban-rural linkage of industries,to achieve coordinated promotion of rural revitalization and human-centered urbanization in China.
文摘The special issue aims to address a broad spectrum of topics ranging from human-centered intelligent robots acting as a servant,secretary,or companion to intelligent robotic functions.The special issue publishes original papers of innovative ideas and concepts,new discoveries,and novel applications and business models relevant to the field of human-centered intelligent robots.In this special issue,modeling,intelligent control,