Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations...Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments.展开更多
Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively ...Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively constructs a Human Activity Intensity(HAI)index and employs the Maximal Information Coefficient,four-quadrant model,and XGBoostSHAP model to investigate the spatiotemporal relationship and influencing factors of HAI-LST in the Yellow River Basin(YRB)from 2000 to 2020.The results indicated that from 2000 to 2020,as HAI and LST increased,the static HAI-LST relationship in the YRB showed a positive correlation that continued to strengthen.This dynamic relationship exhibited conflicting development,with the proportion of coordinated to conflicting regions shifting from 1:4 to 1:2,indicating a reduction in conflict intensity.Notably,only the degree of conflict in the source area decreased significantly,whereas it intensified in the upper and lower reaches.The key factors influencing the HAI-LST relationship include fractional vegetation cover,slope,precipitation,and evapotranspiration,along with region-specific factors such as PM_(2.5),biodiversity,and elevation.Based on these findings,region-specific ecological management strategies have been proposed to mitigate conflict-prone areas and alleviate thermal stress,thereby providing important guidance for promoting harmonious development between humans and nature.展开更多
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field...Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.展开更多
This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The partici...This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies.展开更多
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ...Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.展开更多
Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the o...Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.展开更多
Video action recognition(VAR)aims to analyze dynamic behaviors in videos and achieve semantic understanding.VAR faces challenges such as temporal dynamics,action-scene coupling,and the complexity of human interactions...Video action recognition(VAR)aims to analyze dynamic behaviors in videos and achieve semantic understanding.VAR faces challenges such as temporal dynamics,action-scene coupling,and the complexity of human interactions.Existing methods can be categorized into motion-level,event-level,and story-level ones based on spatiotemporal granularity.However,single-modal approaches struggle to capture complex behavioral semantics and human factors.Therefore,in recent years,vision-language models(VLMs)have been introduced into this field,providing new research perspectives for VAR.In this paper,we systematically review spatiotemporal hierarchical methods in VAR and explore how the introduction of large models has advanced the field.Additionally,we propose the concept of“Factor”to identify and integrate key information from both visual and textual modalities,enhancing multimodal alignment.We also summarize various multimodal alignment methods and provide in-depth analysis and insights into future research directions.展开更多
This study examines the advent of agent interaction(AIx)as a transformative paradigm in humancomputer interaction(HCI),signifying a notable evolution beyond traditional graphical interfaces and touchscreen interaction...This study examines the advent of agent interaction(AIx)as a transformative paradigm in humancomputer interaction(HCI),signifying a notable evolution beyond traditional graphical interfaces and touchscreen interactions.Within the context of large models,AIx is characterized by its innovative interaction patterns and a plethora of application scenarios that hold great potential.The paper highlights the pivotal role of AIx in shaping the future landscape of the large model industry,emphasizing its adoption and necessity from a user's perspective.This study underscores the pivotal role of AIx in dictating the future trajectory of a large model industry by emphasizing the importance of its adoption and necessity from a user-centric perspective.The fundamental drivers of AIx include the introduction of novel capabilities,replication of capabilities(both anthropomorphic and superhuman),migration of capabilities,aggregation of intelligence,and multiplication of capabilities.These elements are essential for propelling innovation,expanding the frontiers of capability,and realizing the exponential superposition of capabilities,thereby mitigating labor redundancy and addressing a spectrum of human needs.Furthermore,this study provides an in-depth analysis of the structural components and operational mechanisms of agents supported by large models.Such advancements significantly enhance the capacity of agents to tackle complex problems and provide intelligent services,thereby facilitating a more intuitive,adaptive,and personalized engagement between humans and machines.The study further delineates four principal categories of interaction patterns that encompass eight distinct modalities of interaction,corresponding to twenty-one specific scenarios,including applications in smart home systems,health assistance,and elderly care.This emphasizes the significance of this new paradigm in advancing HCI,fostering technological advancements,and redefining user experiences.However,it also acknowledges the challenges and ethical considerations that accompany this paradigm shift,recognizing the need for a balanced approach to harness the full potential of AIx in modern society.展开更多
Objective:Unlike for drug-drug interactions,rigorous guidelines for assessing herb-drug interactions are nonexistent.GuHong is an intravenous herbal formulation used as adjunct therapy for the management of ischemic s...Objective:Unlike for drug-drug interactions,rigorous guidelines for assessing herb-drug interactions are nonexistent.GuHong is an intravenous herbal formulation used as adjunct therapy for the management of ischemic stroke.This investigation aimed to evaluate its potential to precipitate pharmacokinetic drug interactions.To facilitate the potential assessment,a human multi-compound pharmacokinetic study,along with associated supportive studies,was conducted to pinpoint GuHong compounds for testing.Methods:After analyzing the chemical composition of GuHong,a pharmacokinetic study was conducted in healthy subjects who received GuHong intravenously to identify its significantly exposed compounds and their pharmacokinetics.In addition,supportive rat and in vitro studies were conducted to assess the hepatic and renal disposition of these compounds,including their metabolism and transport.The potential of GuHong to precipitate drug interactions was evaluated in vitro using significantly exposed compounds,which were tested for their effects on drug-metabolizing enzymes and drug transporters listed in the ICH M12 Guideline(2024),with a focus on inhibition and induction.Samples were analyzed by liquid chromatography-mass spectrometry.Results:A total of 54 constituents(0.01-27.18μmol/day)derived from Carthamus tinctorius flowers(Honghua)and N-acetyl-L-glutamine(3,090μmol/day)were detected in GuHong.Following intravenous administration of GuHong,hydroxysafflor yellow A emerged as the principal circulating compound from Honghua.Saffloquinoside D,kaempferol-3-O-rutinoside,kaempferol-3-O-sophoroside,8-hydroxycinnamic acid-8-O-glucoside,coumaric acid-4-O-glucoside,and chlorogenic acid,also from Honghua,were detected but at low plasma levels.Hydroxysafflor yellow A,primarily eliminated via glomerular filtration-based renal excretion,exhibited the characteristics of an intravenous“hard drug.”N-Acetyl-L-glutamine was another major circulating compound of GuHong and was eliminated through renal excretion and hydrolysis to L-glutamine.GuHong had a low potential to precipitate pharmacokinetic drug interactions.Conclusions:The low drug interaction potential of GuHong is advantageous for its use in the treatment of ischemic stroke in the context of polypharmacy.The methodology developed here can be applied to the study of other complex herbal medicines for their pharmacokinetic drug interaction potential.展开更多
The shop floor dynamic scheduling system based on human-computer interaction is the use of computer-aided decision-making and human-computer interaction to solve the dynamic scheduling problem.A human-computer interac...The shop floor dynamic scheduling system based on human-computer interaction is the use of computer-aided decision-making and human-computer interaction to solve the dynamic scheduling problem.A human-computer interaction interface based on Gantt chart is designed,which can not only comprehensively and quantitatively represent the scheduling process and scheduling scheme,but also have friendly human-computer interaction performance.The data transmission and interaction architecture is constructed to realize the rapid response to shop floor disturbance events.A priority calculation algorithm integrating priority rules and dispatcher preference is proposed,which realizes the automatic calculation of priority for the dispatcher's reference and reduces theirburden.A man-machine interactive shop floor dynamic scheduling strategy is proposed.When solving the dynamic flexible job shop scheduling problem caused by machine tool breakdown and urgent order,the origin moments obtained by using this strategy are 0.4190 and 0.3703 respectively.As can be seen from the origin moment indicator,the dynamic shop floor scheduling system based on the human-computer interaction is efficient and reliable in solving dynamic scheduling problems,and related strategies of this system are also feasible and stable.展开更多
With the growing application of intelligent robots in service,manufacturing,and medical fields,efficient and natural interaction between humans and robots has become key to improving collaboration efficiency and user ...With the growing application of intelligent robots in service,manufacturing,and medical fields,efficient and natural interaction between humans and robots has become key to improving collaboration efficiency and user experience.Gesture recognition,as an intuitive and contactless interaction method,can overcome the limitations of traditional interfaces and enable real-time control and feedback of robot movements and behaviors.This study first reviews mainstream gesture recognition algorithms and their application on different sensing platforms(RGB cameras,depth cameras,and inertial measurement units).It then proposes a gesture recognition method based on multimodal feature fusion and a lightweight deep neural network that balances recognition accuracy with computational efficiency.At system level,a modular human-robot interaction architecture is constructed,comprising perception,decision,and execution layers,and gesture commands are transmitted and mapped to robot actions in real time via the ROS communication protocol.Through multiple comparative experiments on public gesture datasets and a self-collected dataset,the proposed method’s superiority is validated in terms of accuracy,response latency,and system robustness,while user-experience tests assess the interface’s usability.The results provide a reliable technical foundation for robot collaboration and service in complex scenarios,offering broad prospects for practical application and deployment.展开更多
Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results ca...Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.展开更多
The Loess Plateau(LP),one of the most ecologically fragile regions in China,is affected by severe soil erosion and environmental degradation.Despite large-scale ecological restoration efforts made by Chinese governmen...The Loess Plateau(LP),one of the most ecologically fragile regions in China,is affected by severe soil erosion and environmental degradation.Despite large-scale ecological restoration efforts made by Chinese government in recent years,the region continues to face significant ecological challenges due to the combined impact of climate change and human activities.In this context,we developed a kernal Remote Sensing Ecological Index(kRSEI)using Moderate Resolution Imaging Spectroradiometer(MODIS)products on the Google Earth Engine(GEE)platform to analyze the spatiotemporal patterns and trends in ecological environmental quality(EEQ)across the LP from 2000 to 2022 and project future trajectories.Then,we applied partial correlation analysis and multivariate regression residual analysis to further quantify the relative contributions of climate change and human activities to EEQ.During the study period,the kRSEI values exhibited significant spatial heterogeneity,with a stepwise degradation pattern in the southeast to northwest across the LP.The maximum(0.51)and minimum(0.46)values of the kRSEI were observed in 2007 and 2021,respectively.Trend analyses revealed a decline in EEQ across the LP.Hurst exponent analysis predicted a trend of weak anti-persistent development in most of the plateau areas in the future.A positive correlation was identified between kRSEI and precipitation,particularly in the central and western regions;although,improvements were limited by a precipitation threshold of 837.66 mm/a.A moderate increase in temperature was shown to potentially benefit the ecological environment within a certain range;however,temperature of-1.00°C-7.95°C often had a negative impact on the ecosystem.Climate change and human activities jointly influenced 65.78%of LP area on EEQ,primarily having a negative impact.In terms of contribution,human activities played a dominant role in driving changes in EEQ across the plateau.These findings provide crucial insights for accurately assessing the ecological state of the LP and suggest the design of future restoration strategies.展开更多
[Objective] The aim was to investigate the possible interaction between SET and eEF1A1 in human liver cells. [Method] Firstly the total proteins of human L-02 liver cells were extracted under non-denaturing conditions...[Objective] The aim was to investigate the possible interaction between SET and eEF1A1 in human liver cells. [Method] Firstly the total proteins of human L-02 liver cells were extracted under non-denaturing conditions; then,mouse anti-human SET and rabbit anti-human eEF1A1 antibodies were used to perform the co-immunoprecipitation respectively; subsequently,the immunoprecipitations was correspondingly detected with rabbit anti-human eEF1A1 and mouse anti-human SET antibodies by Western Blot. [Result] EEF1A1 was detected in protein complex from the immunoprecipitations by using anti-SET antibody,and SET also was detected in immunoprecipitations by using anti-eEF1A1 antibody. [Conclusion] The interaction between SET and eEF1A1 in human liver cells was confirmed.展开更多
The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first i...The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.展开更多
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi...A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.展开更多
Understanding the interactions between humans and nature in the Anthropocene is central to the quest for both human wellbeing and global sustainability.However,the time-space compression,long range interactions,and re...Understanding the interactions between humans and nature in the Anthropocene is central to the quest for both human wellbeing and global sustainability.However,the time-space compression,long range interactions,and reconstruction of socio-economic structures at the global scale all pose great challenges to the traditional analytical frameworks of human-nature systems.In this paper,we extend the connotation of coupled human and natural systems(CHANS)and their four dimensions—space,time,appearance,and organization,and propose a novel framework:“Coupled Human and Natural Cube”(CHNC)to explain the coupling mechanism between humans and the natural environment.Our proposition is inspired by theories based on the human-earth areal system,telecoupling framework,planetary urbanization,and perspectives from complexity science.We systematically introduce the concept,connotation,evolution rules,and analytical dimensions of the CHNC.Notably there exist various“coupling lines”in the CHNC,connecting different systems and elements at multiple scales and forming a large,nested,interconnected,organic system.The rotation of the CHNC represents spatiotemporal nonlinear fluctuations in CHANS in different regions.As a system continually exchanges energy with the environment,a critical phase transition occurs when fluctuations reach a certain threshold,leading to emergent behavior of the system.The CHNC has four dimensions—pericoupling and telecoupling,syncoupling and lagcoupling,apparent coupling and hidden coupling,and intra-organization coupling and inter-organizational coupling.We mainly focus on the theoretical connotation,research methods,and typical cases of telecoupling,lagcoupling,hidden coupling,and inter-organizational coupling,and put forward a human-nature coupling matrix to integrate multiple dimensions.In summary,the CHNC provides a more comprehensive and systematic research paradigm for understanding the evolution and coupling mechanism of the human-nature system,which expands the analytical dimension of CHANS.The CHNC also provides a theoretical support for formulating regional,sustainable development policies for human wellbeing.展开更多
In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin(DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode(Pt/MWC...In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin(DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode(Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V(vs. Ag/Ag Cl) in Britton Robinson(B-R) buffer(p H 4.0, 0.1 M). The electrochemical parameters including p H, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05–4.0 μg/m L with the detection limit of 0.002 μg/m L. The number of electron transfers(n) and electron transfer-coefficient(α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of DOX in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant(K_b) of 1.12×10~5L/mol.展开更多
Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Inte...Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Interactions by humans may be neutral,positive or negative in nature.Regular pleasant contact with humans may result in desirable alterations in the physiology,behaviour,health and productivity of farm animals.On the contrary,animals that were subjected to aversive human contact were highly fearful of humans and their growth and reproductive performance could be compromised.Farm animals are particularly sensitive to human stimulation that occurs early in life,while many systems of the animals are still developing.This may have long-lasting impact and could possibly modify their genetic potential.The question as to how human contact can have a positive impact on responses to stressors,and productivity is not well understood.Recent work in our laboratory suggested that pleasant human contact may alter ability to tolerate various stressors through enhanced heat shock protein(hsp) 70 expression.The induction of hsp is often associated with increased tolerance to environmental stressors and disease resistance in animals.The attitude and consequent behaviour of stockpeople affect the animals' fear of human which eventually influence animals' productivity and welfare.Other than attitude and behaviour,technical skills,knowledge,job motivation,commitment and job satisfaction are prerequisites for high job performance.展开更多
Objective: To study the disruption of co- localization of human Daxx(hDaxx) with promyelocytic leukemia protein(PML) at the PML oncogenic domains (PODs) by the interaction of hDaxx with adenovirus(Ad) 12 E1B 55 Kiloda...Objective: To study the disruption of co- localization of human Daxx(hDaxx) with promyelocytic leukemia protein(PML) at the PML oncogenic domains (PODs) by the interaction of hDaxx with adenovirus(Ad) 12 E1B 55 Kilodalton Oncoprotein (Ad12 E1B 55kD). Methods: The direct binding reaction of hDaxx and Ad12 E1B 55kD was analyzed by coimmunoprecipitation and Western blotting in vivo or in vitro. The interaction of hDaxx with Ad12 E1B 55kD was studied using yeast two-hybrid assay. Results: hDaxx bounded directly to Ad12 E1B 55kD in vivo and in vitro. hDaxx interacted with full length Ad12 E1B 55kD. Conclusion: Transcriptional regulator hDaxx directly binds to and interacts with Ad12 E1B 55kD.展开更多
基金supported by the National Natural Science Foundation of China(General Program)under Grant 52571385National Key R&D Program of China(Grant No.2024YFC2815000 and No.2024YFB3816000)+12 种基金Open Fund of State Key Laboratory of Deep-sea Manned Vehicles(Grant No.2025SKLDMV07)Shenzhen Science and Technology Program(WDZC20231128114452001,JCYJ20240813112107010 and JCYJ20240813111910014)the Tsinghua SIGS Scientific Research Startup Fund(QD2022021C)the Dreams Foundation of Jianghuai Advance Technology Center(2023-ZM 01 Z006)the Ocean Decade International Cooperation Center(ODCC)(GHZZ3702840002024020000026)Shenzhen Key Laboratory of Advanced Technology for Marine Ecology(ZDSYS20230626091459009)Shenzhen Science and Technology Program(No.KJZD20240903100905008)the National Natural Science Foundation of China(No.22305141)Pearl River Talent Program(No.2023QN10C114)General Program of Guangdong Province(No.2025A1515011700)the Guangdong Innovative and Entrepreneurial Research Team Program(2023ZT10C040)Scientific Research Foundation from Shenzhen Finance Bureau(No.GJHZ20240218113600002)Tsinghua University(JC2023001).
文摘Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments.
基金Shanxi Province Graduate Research Practice Innovation Project,No.2023KY465Project on the Reform of Graduate Education and Teaching in Shanxi Province,No.2021YJJG146+1 种基金Research Project of Shanxi Provincial Cultural Relics Bureau,No.22-8-14-1400-119National Key R&D Program of China,No.2021YFB3901300。
文摘Human activities have significantly impacted the land surface temperature(LST),endangering human health;however,the relationship between these two factors has not been adequately quantified.This study comprehensively constructs a Human Activity Intensity(HAI)index and employs the Maximal Information Coefficient,four-quadrant model,and XGBoostSHAP model to investigate the spatiotemporal relationship and influencing factors of HAI-LST in the Yellow River Basin(YRB)from 2000 to 2020.The results indicated that from 2000 to 2020,as HAI and LST increased,the static HAI-LST relationship in the YRB showed a positive correlation that continued to strengthen.This dynamic relationship exhibited conflicting development,with the proportion of coordinated to conflicting regions shifting from 1:4 to 1:2,indicating a reduction in conflict intensity.Notably,only the degree of conflict in the source area decreased significantly,whereas it intensified in the upper and lower reaches.The key factors influencing the HAI-LST relationship include fractional vegetation cover,slope,precipitation,and evapotranspiration,along with region-specific factors such as PM_(2.5),biodiversity,and elevation.Based on these findings,region-specific ecological management strategies have been proposed to mitigate conflict-prone areas and alleviate thermal stress,thereby providing important guidance for promoting harmonious development between humans and nature.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(No.12274177 and 12304261)the China Postdoctoral Science Foundation(No.2024M751076)。
文摘Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.
文摘This article describes a pilot study aiming at generating social interactions between a humanoid robot and adolescents with autism spectrum disorder (ASD), through the practice of a gesture imitation game. The participants were a 17-year-old young lady with ASD and intellectual deficit, and a control participant: a preadolescent with ASD but no intellectual deficit (Asperger syndrome). The game is comprised of four phases: greetings, pairing, imitation, and closing. Field educators were involved, playing specific roles: visual or physical inciter. The use of a robot allows for catching the participants’ attention, playing the imitation game for a longer period of time than with a human partner, and preventing the game partner’s negative facial expressions resulting from tiredness, impatience, or boredom. The participants’ behavior was observed in terms of initial approach towards the robot, positioning relative to the robot in terms of distance and orientation, reactions to the robot’s voice or moves, signs of happiness, and imitation attempts. Results suggest a more and more natural approach towards the robot during the sessions, as well as a higher level of social interaction, based on the variations of the parameters listed above. We use these preliminary results to draw the next steps of our research work as well as identify further perspectives, with this aim in mind: improving social interactions with adolescents with ASD and intellectual deficit, allowing for better integration of these people into our societies.
基金supported by the National Key Research and Development Program of China (MOST)(Grant No.2022YFA1402800)the Chinese Academy of Sciences (CAS) Presidents International Fellowship Initiative (PIFI)(Grant No.2025PG0006)+3 种基金the National Natural Science Foundation of China (NSFC)(Grant Nos.51831012,12274437,and 52161160334)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)the CAS Youth Interdisciplinary Teamthe China Postdoctoral Science Foundation (Grant No.2025M773402)。
文摘Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.
基金supported by the National Natural Science Foundation of China(No.22276219)the foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.52121004)+1 种基金the major program Natural Science Foundation of Hunan Province of China(No.2021JC0001)the Fundamental Research Funds for the Central Universities of Central South University(No.2024ZZTS0063).
文摘Beryllium-containing sludge(BCS)is a typical hazardous waste from Be smelting,which can cause serious harm to ecology and human health by releasing harmful Be if it is stored long-term in environment.Nonetheless,the occurrence of Be in BCS is unclear,which seriously hinders the development of pollution control technologies.In order to enhance the understanding of BCS,the occurrence of Be and the microscale interactions with coexisting phases were investigated for the first time.It was found that CaSO_(4)·2H_(2)O and amorphous SiO_(2) are the primary phases of BCS.The simulated experiments of purified materials showed that Be interacted with CaSO_(4)·2H_(2)O and amorphous SiO_(2).Be can enter into the lattice of CaSO_(4)·2H_(2)O mainly as free Be2+.Amorphous SiO_(2) can adsorb Be2+particularly at a pH range of 3–5.The dissolution behavior experiment of BCS shows that about 52%of the Be is readily extracted under acidic conditions,which refers to the Be of independent occurrence.In contrast,the remaining 48%of Be can be extracted only after the CaSO_(4)·2H_(2)O has completely dissolved.Hence,CaSO_(4)·2H_(2)O is identified as the key occurrence phase which determines the highly efficient dissolution of Be.As a result,this study enhances the understanding of BCS and lays the foundation for the development of Be separation technologies.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LQ23F030001)the National Natural Science Foundation of China(No.62406280)+5 种基金the Autism Research Special Fund of Zhejiang Foundation for Disabled Persons(No.2023008)the Liaoning Province Higher Education Innovative Talents Program Support Project(No.LR2019058)the Liaoning Province Joint Open Fund for Key Scientific and Technological Innovation Bases(No.2021-KF-12-05)the Central Guidance on Local Science and Technology Development Fund of Liaoning Province(No.2023JH6/100100066)the Key Laboratory for Biomedical Engineering of Ministry of Education,Zhejiang University,Chinain part by the Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning.
文摘Video action recognition(VAR)aims to analyze dynamic behaviors in videos and achieve semantic understanding.VAR faces challenges such as temporal dynamics,action-scene coupling,and the complexity of human interactions.Existing methods can be categorized into motion-level,event-level,and story-level ones based on spatiotemporal granularity.However,single-modal approaches struggle to capture complex behavioral semantics and human factors.Therefore,in recent years,vision-language models(VLMs)have been introduced into this field,providing new research perspectives for VAR.In this paper,we systematically review spatiotemporal hierarchical methods in VAR and explore how the introduction of large models has advanced the field.Additionally,we propose the concept of“Factor”to identify and integrate key information from both visual and textual modalities,enhancing multimodal alignment.We also summarize various multimodal alignment methods and provide in-depth analysis and insights into future research directions.
文摘This study examines the advent of agent interaction(AIx)as a transformative paradigm in humancomputer interaction(HCI),signifying a notable evolution beyond traditional graphical interfaces and touchscreen interactions.Within the context of large models,AIx is characterized by its innovative interaction patterns and a plethora of application scenarios that hold great potential.The paper highlights the pivotal role of AIx in shaping the future landscape of the large model industry,emphasizing its adoption and necessity from a user's perspective.This study underscores the pivotal role of AIx in dictating the future trajectory of a large model industry by emphasizing the importance of its adoption and necessity from a user-centric perspective.The fundamental drivers of AIx include the introduction of novel capabilities,replication of capabilities(both anthropomorphic and superhuman),migration of capabilities,aggregation of intelligence,and multiplication of capabilities.These elements are essential for propelling innovation,expanding the frontiers of capability,and realizing the exponential superposition of capabilities,thereby mitigating labor redundancy and addressing a spectrum of human needs.Furthermore,this study provides an in-depth analysis of the structural components and operational mechanisms of agents supported by large models.Such advancements significantly enhance the capacity of agents to tackle complex problems and provide intelligent services,thereby facilitating a more intuitive,adaptive,and personalized engagement between humans and machines.The study further delineates four principal categories of interaction patterns that encompass eight distinct modalities of interaction,corresponding to twenty-one specific scenarios,including applications in smart home systems,health assistance,and elderly care.This emphasizes the significance of this new paradigm in advancing HCI,fostering technological advancements,and redefining user experiences.However,it also acknowledges the challenges and ethical considerations that accompany this paradigm shift,recognizing the need for a balanced approach to harness the full potential of AIx in modern society.
基金supported in part by the National Natural Science Foundation of China Grants(82192912 and 82074273)by the National Key R&D Program(“Strategic Scientific and Technological Innovation Cooperation”)Key Project(2022YFE0203600)released by the Ministry of Science and Technology。
文摘Objective:Unlike for drug-drug interactions,rigorous guidelines for assessing herb-drug interactions are nonexistent.GuHong is an intravenous herbal formulation used as adjunct therapy for the management of ischemic stroke.This investigation aimed to evaluate its potential to precipitate pharmacokinetic drug interactions.To facilitate the potential assessment,a human multi-compound pharmacokinetic study,along with associated supportive studies,was conducted to pinpoint GuHong compounds for testing.Methods:After analyzing the chemical composition of GuHong,a pharmacokinetic study was conducted in healthy subjects who received GuHong intravenously to identify its significantly exposed compounds and their pharmacokinetics.In addition,supportive rat and in vitro studies were conducted to assess the hepatic and renal disposition of these compounds,including their metabolism and transport.The potential of GuHong to precipitate drug interactions was evaluated in vitro using significantly exposed compounds,which were tested for their effects on drug-metabolizing enzymes and drug transporters listed in the ICH M12 Guideline(2024),with a focus on inhibition and induction.Samples were analyzed by liquid chromatography-mass spectrometry.Results:A total of 54 constituents(0.01-27.18μmol/day)derived from Carthamus tinctorius flowers(Honghua)and N-acetyl-L-glutamine(3,090μmol/day)were detected in GuHong.Following intravenous administration of GuHong,hydroxysafflor yellow A emerged as the principal circulating compound from Honghua.Saffloquinoside D,kaempferol-3-O-rutinoside,kaempferol-3-O-sophoroside,8-hydroxycinnamic acid-8-O-glucoside,coumaric acid-4-O-glucoside,and chlorogenic acid,also from Honghua,were detected but at low plasma levels.Hydroxysafflor yellow A,primarily eliminated via glomerular filtration-based renal excretion,exhibited the characteristics of an intravenous“hard drug.”N-Acetyl-L-glutamine was another major circulating compound of GuHong and was eliminated through renal excretion and hydrolysis to L-glutamine.GuHong had a low potential to precipitate pharmacokinetic drug interactions.Conclusions:The low drug interaction potential of GuHong is advantageous for its use in the treatment of ischemic stroke in the context of polypharmacy.The methodology developed here can be applied to the study of other complex herbal medicines for their pharmacokinetic drug interaction potential.
基金supported by the Tianjin Enterprise Science and Technology Commissioner Project(Grant No.23YDTPJC00740,Grant No.24YDTPJC00610)the Tianjin Tiankai Higher Education Science and Technology Innovation Park Enterprise R&D Special Project(Grant No.23YFZXYC00027).
文摘The shop floor dynamic scheduling system based on human-computer interaction is the use of computer-aided decision-making and human-computer interaction to solve the dynamic scheduling problem.A human-computer interaction interface based on Gantt chart is designed,which can not only comprehensively and quantitatively represent the scheduling process and scheduling scheme,but also have friendly human-computer interaction performance.The data transmission and interaction architecture is constructed to realize the rapid response to shop floor disturbance events.A priority calculation algorithm integrating priority rules and dispatcher preference is proposed,which realizes the automatic calculation of priority for the dispatcher's reference and reduces theirburden.A man-machine interactive shop floor dynamic scheduling strategy is proposed.When solving the dynamic flexible job shop scheduling problem caused by machine tool breakdown and urgent order,the origin moments obtained by using this strategy are 0.4190 and 0.3703 respectively.As can be seen from the origin moment indicator,the dynamic shop floor scheduling system based on the human-computer interaction is efficient and reliable in solving dynamic scheduling problems,and related strategies of this system are also feasible and stable.
文摘With the growing application of intelligent robots in service,manufacturing,and medical fields,efficient and natural interaction between humans and robots has become key to improving collaboration efficiency and user experience.Gesture recognition,as an intuitive and contactless interaction method,can overcome the limitations of traditional interfaces and enable real-time control and feedback of robot movements and behaviors.This study first reviews mainstream gesture recognition algorithms and their application on different sensing platforms(RGB cameras,depth cameras,and inertial measurement units).It then proposes a gesture recognition method based on multimodal feature fusion and a lightweight deep neural network that balances recognition accuracy with computational efficiency.At system level,a modular human-robot interaction architecture is constructed,comprising perception,decision,and execution layers,and gesture commands are transmitted and mapped to robot actions in real time via the ROS communication protocol.Through multiple comparative experiments on public gesture datasets and a self-collected dataset,the proposed method’s superiority is validated in terms of accuracy,response latency,and system robustness,while user-experience tests assess the interface’s usability.The results provide a reliable technical foundation for robot collaboration and service in complex scenarios,offering broad prospects for practical application and deployment.
基金supported by the National Key R&D Program of China(No.2023YFC3081200)the National Natural Science Foundation of China(No.42077264)the Scientific Research Project of PowerChina Huadong Engineering Corporation Limited(HDEC-2022-0301).
文摘Rock discontinuities control rock mechanical behaviors and significantly influence the stability of rock masses.However,existing discontinuity mapping algorithms are susceptible to noise,and the calculation results cannot be fed back to users timely.To address this issue,we proposed a human-machine interaction(HMI)method for discontinuity mapping.Users can help the algorithm identify the noise and make real-time result judgments and parameter adjustments.For this,a regular cube was selected to illustrate the workflows:(1)point cloud was acquired using remote sensing;(2)the HMI method was employed to select reference points and angle thresholds to detect group discontinuity;(3)individual discontinuities were extracted from the group discontinuity using a density-based cluster algorithm;and(4)the orientation of each discontinuity was measured based on a plane fitting algorithm.The method was applied to a well-studied highway road cut and a complex natural slope.The consistency of the computational results with field measurements demonstrates its good accuracy,and the average error in the dip direction and dip angle for both cases was less than 3.Finally,the computational time of the proposed method was compared with two other popular algorithms,and the reduction in computational time by tens of times proves its high computational efficiency.This method provides geologists and geological engineers with a new idea to map rapidly and accurately rock structures under large amounts of noises or unclear features.
基金funded by the National Natural Science Foundation of China(42361017)the Gansu Provincial Science and Technology Program-Special Program for Key Research and Development(R&D)on Ecological Civilization Construction in Gansu Province(24YFFA050)the Gansu Agricultural University-Gansu Provincial Academy of Natural Resources Planning Joint Graduate Training Base Project(GAU2024-003)。
文摘The Loess Plateau(LP),one of the most ecologically fragile regions in China,is affected by severe soil erosion and environmental degradation.Despite large-scale ecological restoration efforts made by Chinese government in recent years,the region continues to face significant ecological challenges due to the combined impact of climate change and human activities.In this context,we developed a kernal Remote Sensing Ecological Index(kRSEI)using Moderate Resolution Imaging Spectroradiometer(MODIS)products on the Google Earth Engine(GEE)platform to analyze the spatiotemporal patterns and trends in ecological environmental quality(EEQ)across the LP from 2000 to 2022 and project future trajectories.Then,we applied partial correlation analysis and multivariate regression residual analysis to further quantify the relative contributions of climate change and human activities to EEQ.During the study period,the kRSEI values exhibited significant spatial heterogeneity,with a stepwise degradation pattern in the southeast to northwest across the LP.The maximum(0.51)and minimum(0.46)values of the kRSEI were observed in 2007 and 2021,respectively.Trend analyses revealed a decline in EEQ across the LP.Hurst exponent analysis predicted a trend of weak anti-persistent development in most of the plateau areas in the future.A positive correlation was identified between kRSEI and precipitation,particularly in the central and western regions;although,improvements were limited by a precipitation threshold of 837.66 mm/a.A moderate increase in temperature was shown to potentially benefit the ecological environment within a certain range;however,temperature of-1.00°C-7.95°C often had a negative impact on the ecosystem.Climate change and human activities jointly influenced 65.78%of LP area on EEQ,primarily having a negative impact.In terms of contribution,human activities played a dominant role in driving changes in EEQ across the plateau.These findings provide crucial insights for accurately assessing the ecological state of the LP and suggest the design of future restoration strategies.
基金Supported by National Natural Science Foundation (30972454)Shenzhen Science and Technology Plan Major Project (200801010)~~
文摘[Objective] The aim was to investigate the possible interaction between SET and eEF1A1 in human liver cells. [Method] Firstly the total proteins of human L-02 liver cells were extracted under non-denaturing conditions; then,mouse anti-human SET and rabbit anti-human eEF1A1 antibodies were used to perform the co-immunoprecipitation respectively; subsequently,the immunoprecipitations was correspondingly detected with rabbit anti-human eEF1A1 and mouse anti-human SET antibodies by Western Blot. [Result] EEF1A1 was detected in protein complex from the immunoprecipitations by using anti-SET antibody,and SET also was detected in immunoprecipitations by using anti-eEF1A1 antibody. [Conclusion] The interaction between SET and eEF1A1 in human liver cells was confirmed.
基金supported by the National Natural Science Foundation of China,Nos.82104560(to CL),U21A20400(to QW)the Natural Science Foundation of Beijing,No.7232279(to XW)the Project of Beijing University of Chinese Medicine,No.2022-JYB-JBZR-004(to XW)。
文摘The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke,which promotes neuronal death and inhibits nerve tissue regeneration.As the first immune cells to be activated after an ischemic stroke,microglia play an important immunomodulatory role in the progression of the condition.After an ischemic stroke,peripheral blood immune cells(mainly T cells)are recruited to the central nervous system by chemokines secreted by immune cells in the brain,where they interact with central nervous system cells(mainly microglia)to trigger a secondary neuroimmune response.This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke.We found that,during ischemic stroke,T cells and microglia demonstrate a more pronounced synergistic effect.Th1,Th17,and M1 microglia can co-secrete proinflammatory factors,such as interferon-γ,tumor necrosis factor-α,and interleukin-1β,to promote neuroinflammation and exacerbate brain injury.Th2,Treg,and M2 microglia jointly secrete anti-inflammatory factors,such as interleukin-4,interleukin-10,and transforming growth factor-β,to inhibit the progression of neuroinflammation,as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury.Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation,which in turn determines the prognosis of ischemic stroke patients.Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke.However,such studies have been relatively infrequent,and clinical experience is still insufficient.In summary,in ischemic stroke,T cell subsets and activated microglia act synergistically to regulate inflammatory progression,mainly by secreting inflammatory factors.In the future,a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells,along with the activation of M2-type microglia.These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.
文摘A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.
基金Program of the National Natural Science Foundation of China,No.41590842,No.41801164China Postdoctoral Science Foundation,No.2018M630196。
文摘Understanding the interactions between humans and nature in the Anthropocene is central to the quest for both human wellbeing and global sustainability.However,the time-space compression,long range interactions,and reconstruction of socio-economic structures at the global scale all pose great challenges to the traditional analytical frameworks of human-nature systems.In this paper,we extend the connotation of coupled human and natural systems(CHANS)and their four dimensions—space,time,appearance,and organization,and propose a novel framework:“Coupled Human and Natural Cube”(CHNC)to explain the coupling mechanism between humans and the natural environment.Our proposition is inspired by theories based on the human-earth areal system,telecoupling framework,planetary urbanization,and perspectives from complexity science.We systematically introduce the concept,connotation,evolution rules,and analytical dimensions of the CHNC.Notably there exist various“coupling lines”in the CHNC,connecting different systems and elements at multiple scales and forming a large,nested,interconnected,organic system.The rotation of the CHNC represents spatiotemporal nonlinear fluctuations in CHANS in different regions.As a system continually exchanges energy with the environment,a critical phase transition occurs when fluctuations reach a certain threshold,leading to emergent behavior of the system.The CHNC has four dimensions—pericoupling and telecoupling,syncoupling and lagcoupling,apparent coupling and hidden coupling,and intra-organization coupling and inter-organizational coupling.We mainly focus on the theoretical connotation,research methods,and typical cases of telecoupling,lagcoupling,hidden coupling,and inter-organizational coupling,and put forward a human-nature coupling matrix to integrate multiple dimensions.In summary,the CHNC provides a more comprehensive and systematic research paradigm for understanding the evolution and coupling mechanism of the human-nature system,which expands the analytical dimension of CHANS.The CHNC also provides a theoretical support for formulating regional,sustainable development policies for human wellbeing.
基金the research council of Gachsaran Branch, Islamic Azad University, Iran for supporting this project under Grant no. 25518
文摘In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin(DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode(Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V(vs. Ag/Ag Cl) in Britton Robinson(B-R) buffer(p H 4.0, 0.1 M). The electrochemical parameters including p H, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05–4.0 μg/m L with the detection limit of 0.002 μg/m L. The number of electron transfers(n) and electron transfer-coefficient(α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of DOX in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant(K_b) of 1.12×10~5L/mol.
文摘Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Interactions by humans may be neutral,positive or negative in nature.Regular pleasant contact with humans may result in desirable alterations in the physiology,behaviour,health and productivity of farm animals.On the contrary,animals that were subjected to aversive human contact were highly fearful of humans and their growth and reproductive performance could be compromised.Farm animals are particularly sensitive to human stimulation that occurs early in life,while many systems of the animals are still developing.This may have long-lasting impact and could possibly modify their genetic potential.The question as to how human contact can have a positive impact on responses to stressors,and productivity is not well understood.Recent work in our laboratory suggested that pleasant human contact may alter ability to tolerate various stressors through enhanced heat shock protein(hsp) 70 expression.The induction of hsp is often associated with increased tolerance to environmental stressors and disease resistance in animals.The attitude and consequent behaviour of stockpeople affect the animals' fear of human which eventually influence animals' productivity and welfare.Other than attitude and behaviour,technical skills,knowledge,job motivation,commitment and job satisfaction are prerequisites for high job performance.
基金This work was supported by grants from Ministry of Education of P.R. China (No. 2000-65).
文摘Objective: To study the disruption of co- localization of human Daxx(hDaxx) with promyelocytic leukemia protein(PML) at the PML oncogenic domains (PODs) by the interaction of hDaxx with adenovirus(Ad) 12 E1B 55 Kilodalton Oncoprotein (Ad12 E1B 55kD). Methods: The direct binding reaction of hDaxx and Ad12 E1B 55kD was analyzed by coimmunoprecipitation and Western blotting in vivo or in vitro. The interaction of hDaxx with Ad12 E1B 55kD was studied using yeast two-hybrid assay. Results: hDaxx bounded directly to Ad12 E1B 55kD in vivo and in vitro. hDaxx interacted with full length Ad12 E1B 55kD. Conclusion: Transcriptional regulator hDaxx directly binds to and interacts with Ad12 E1B 55kD.