Epidemiological studies have demonstrated the exacerbation of respiratory diseases following sandstorm-derived particulate matter(PM) exposure.The presence of anthropogenic and biological agents on the sandstorm PM ...Epidemiological studies have demonstrated the exacerbation of respiratory diseases following sandstorm-derived particulate matter(PM) exposure.The presence of anthropogenic and biological agents on the sandstorm PM and the escalation of PM 〈 2.5 μm(PM2.5)pollution in China have led to serious concerns regarding the health effects of PM2.5during Asian sandstorms.We investigated how changes in PM2.5composition,as the weather transitioned towards a sandstorm,affected human airway epithelial cells.Six PM2.5samples covering two sandstorm events and their respective background and transition periods were collected in Baotou,an industrial city near the Gobi Desert in China.PM samples from all three periods had mild cytotoxicity in human bronchial epithelial cell line BEAS-2B,which was positively correlated with the contents of polycyclic aromatic hydrocarbons and several metals.All PM samples potently increased the release of interleukin-6(IL-6) and interleukin-8(IL-8).Endotoxin in all samples contributed significantly to the IL-6 response,with only a minor effect on IL-8.Cr was positively correlated with both IL-6 and IL-8 release,while Si was only associated with the increase of IL-6.Our study suggests that local agricultural and industrial surroundings in addition to the sandstorm play important roles in the respiratory effects of sandstorm-derived PM.展开更多
Human eye detection has become an area of interest in the field of computer vision with an extensive range of applications in human-computer interaction,disease diagnosis,and psychological and physiological studies.Ga...Human eye detection has become an area of interest in the field of computer vision with an extensive range of applications in human-computer interaction,disease diagnosis,and psychological and physiological studies.Gaze-tracking systems are an important research topic in the human-computer interaction field.As one of the core modules of the head-mounted gaze-tracking system,pupil positioning affects the accuracy and stability of the system.By tracking eye movements to better locate the center of the pupil,this paper proposes a method for pupil positioning based on the starburst model.The method uses vertical and horizontal coordinate integral projections in the rectangular region of the human eye for accurate positioning and applies a linear interpolation method that is based on a circular model to the reflections in the human eye.In this paper,we propose a method for detecting the feature points of the pupil edge based on the starburst model,which clusters feature points and uses the RANdom SAmple Consensus(RANSAC)algorithm to perform ellipse fitting of the pupil edge to accurately locate the pupil center.Our experimental results show that the algorithm has higher precision,higher efficiency and more robustness than other algorithms and excellent accuracy even when the image of the pupil is incomplete.展开更多
Based on geometrical facial features and image segmentation, we present a novel algorithm for automatic localization of human eyes in grayscale or color still images with complex background. Firstly, a determination c...Based on geometrical facial features and image segmentation, we present a novel algorithm for automatic localization of human eyes in grayscale or color still images with complex background. Firstly, a determination criterion of eye location is established by the prior knowledge of geometrical facial features. Secondly, a range of threshold values that would separate eye blocks from others in a segmented face image (i.e., a binary image) are estimated. Thirdly, with the progressive increase of the threshold by an appropriate step in that range, once two eye blocks appear from the segmented image, they will be detected by the determination criterion of eye location. Finally, the 2D correlation coefficient is used as a symmetry similarity measure to check the factuality of the two detected eyes. To avoid the background interference, skin color segmentation can be applied in order to enhance the accuracy of eye detection. The experimental results demonstrate the high efficiency of the algorithm and correct localization rate.展开更多
Colored Measurement Noise(CMN)has a great impact on the accuracy of human localization in indoor environments with Inertial Navigation System(INS)integrated with Ultra Wide Band(UWB).To mitigate its influence,a distri...Colored Measurement Noise(CMN)has a great impact on the accuracy of human localization in indoor environments with Inertial Navigation System(INS)integrated with Ultra Wide Band(UWB).To mitigate its influence,a distributed Kalman Filter(dKF)is developed for Gauss-Markov CMN with switching Colouredness Factor Matrix(CFM).In the proposed scheme,a data fusion filter employs the difference between the INS-and UWB-based distance measurements.The main filter produces a final optimal estimate of the human position by fusing the estimates from local filters.The effect of CMN is overcome by using measurement differencing of noisy observations.The tests show that the proposed dKF developed for CMN with CFM can reduce the localization error compared to the original dKF,and thus effectively improve the localization accuracy.展开更多
Can WiFi signals be used for sensing purpose? The growing PHY layer capabilities of WiFi has made it possible to reuse WiFi signals for both communication and sensing. Sensing via WiFi would enable remote sensing wit...Can WiFi signals be used for sensing purpose? The growing PHY layer capabilities of WiFi has made it possible to reuse WiFi signals for both communication and sensing. Sensing via WiFi would enable remote sensing without wearable sensors, simultaneous perception and data transmission without extra communication infrastructure, and contactless sensing in privacy-preserving mode. Due to the popularity of WiFi devices and the ubiquitous deployment of WiFi networks, WiFi-based sensing networks, if fully connected, would potentially rank as one of the world's largest wireless sensor networks. Yet the concept of wireless and sensorless sensing is not the simple combination of WiFi and radar. It seeks breakthroughs from dedicated radar systems, and aims to balance between low cost and high accuracy, to meet the rising demand for pervasive environment perception in everyday life. Despite increasing research interest, wireless sensing is still in its infancy. Through introductions on basic principles and working prototypes, we review the feasibilities and limitations of wireless, sensorless, and contactless sensing via WiFi. We envision this article as a brief primer on wireless sensing for interested readers to explore this open and largely unexplored field and create next-generation wireless and mobile computing applications.展开更多
基金mainly supported by the International Visiting Research Scholar Award (B.Wang) and the Startup Fund (N.Li) from Michigan State University (RN031227)partly supported by the National Natural Science Foundation of China (No.41390240,41130754,30230310,and 41401583)
文摘Epidemiological studies have demonstrated the exacerbation of respiratory diseases following sandstorm-derived particulate matter(PM) exposure.The presence of anthropogenic and biological agents on the sandstorm PM and the escalation of PM 〈 2.5 μm(PM2.5)pollution in China have led to serious concerns regarding the health effects of PM2.5during Asian sandstorms.We investigated how changes in PM2.5composition,as the weather transitioned towards a sandstorm,affected human airway epithelial cells.Six PM2.5samples covering two sandstorm events and their respective background and transition periods were collected in Baotou,an industrial city near the Gobi Desert in China.PM samples from all three periods had mild cytotoxicity in human bronchial epithelial cell line BEAS-2B,which was positively correlated with the contents of polycyclic aromatic hydrocarbons and several metals.All PM samples potently increased the release of interleukin-6(IL-6) and interleukin-8(IL-8).Endotoxin in all samples contributed significantly to the IL-6 response,with only a minor effect on IL-8.Cr was positively correlated with both IL-6 and IL-8 release,while Si was only associated with the increase of IL-6.Our study suggests that local agricultural and industrial surroundings in addition to the sandstorm play important roles in the respiratory effects of sandstorm-derived PM.
基金This research was funded by the Science and Technology Support Plan Project of Hebei Province(grant numbers 17210803D and 19273703D)the Science and Technology Spark Project of the Hebei Seismological Bureau(grant number DZ20180402056)+1 种基金the Education Department of Hebei Province(grant number QN2018095)the Polytechnic College of Hebei University of Science and Technology.
文摘Human eye detection has become an area of interest in the field of computer vision with an extensive range of applications in human-computer interaction,disease diagnosis,and psychological and physiological studies.Gaze-tracking systems are an important research topic in the human-computer interaction field.As one of the core modules of the head-mounted gaze-tracking system,pupil positioning affects the accuracy and stability of the system.By tracking eye movements to better locate the center of the pupil,this paper proposes a method for pupil positioning based on the starburst model.The method uses vertical and horizontal coordinate integral projections in the rectangular region of the human eye for accurate positioning and applies a linear interpolation method that is based on a circular model to the reflections in the human eye.In this paper,we propose a method for detecting the feature points of the pupil edge based on the starburst model,which clusters feature points and uses the RANdom SAmple Consensus(RANSAC)algorithm to perform ellipse fitting of the pupil edge to accurately locate the pupil center.Our experimental results show that the algorithm has higher precision,higher efficiency and more robustness than other algorithms and excellent accuracy even when the image of the pupil is incomplete.
基金This research was supported by the Excellent Young Teachers Program of the Ministry of Education, P. R. China, the National Natural Science Foundation of China(No. 60375010)
文摘Based on geometrical facial features and image segmentation, we present a novel algorithm for automatic localization of human eyes in grayscale or color still images with complex background. Firstly, a determination criterion of eye location is established by the prior knowledge of geometrical facial features. Secondly, a range of threshold values that would separate eye blocks from others in a segmented face image (i.e., a binary image) are estimated. Thirdly, with the progressive increase of the threshold by an appropriate step in that range, once two eye blocks appear from the segmented image, they will be detected by the determination criterion of eye location. Finally, the 2D correlation coefficient is used as a symmetry similarity measure to check the factuality of the two detected eyes. To avoid the background interference, skin color segmentation can be applied in order to enhance the accuracy of eye detection. The experimental results demonstrate the high efficiency of the algorithm and correct localization rate.
基金NSFC Grant 61803175,Shandong Key R&D Program 2019JZZY021005Mexican Consejo Nacional de Cienciay Tecnologıa Project A1-S-10287 Grant CB2017-2018.
文摘Colored Measurement Noise(CMN)has a great impact on the accuracy of human localization in indoor environments with Inertial Navigation System(INS)integrated with Ultra Wide Band(UWB).To mitigate its influence,a distributed Kalman Filter(dKF)is developed for Gauss-Markov CMN with switching Colouredness Factor Matrix(CFM).In the proposed scheme,a data fusion filter employs the difference between the INS-and UWB-based distance measurements.The main filter produces a final optimal estimate of the human position by fusing the estimates from local filters.The effect of CMN is overcome by using measurement differencing of noisy observations.The tests show that the proposed dKF developed for CMN with CFM can reduce the localization error compared to the original dKF,and thus effectively improve the localization accuracy.
文摘Can WiFi signals be used for sensing purpose? The growing PHY layer capabilities of WiFi has made it possible to reuse WiFi signals for both communication and sensing. Sensing via WiFi would enable remote sensing without wearable sensors, simultaneous perception and data transmission without extra communication infrastructure, and contactless sensing in privacy-preserving mode. Due to the popularity of WiFi devices and the ubiquitous deployment of WiFi networks, WiFi-based sensing networks, if fully connected, would potentially rank as one of the world's largest wireless sensor networks. Yet the concept of wireless and sensorless sensing is not the simple combination of WiFi and radar. It seeks breakthroughs from dedicated radar systems, and aims to balance between low cost and high accuracy, to meet the rising demand for pervasive environment perception in everyday life. Despite increasing research interest, wireless sensing is still in its infancy. Through introductions on basic principles and working prototypes, we review the feasibilities and limitations of wireless, sensorless, and contactless sensing via WiFi. We envision this article as a brief primer on wireless sensing for interested readers to explore this open and largely unexplored field and create next-generation wireless and mobile computing applications.