In order to effectively decrease the safety accidents caused by coal miners’human errors,this paper probes into the causality between human errors and life events,coping,psychological stress,psychological function,ph...In order to effectively decrease the safety accidents caused by coal miners’human errors,this paper probes into the causality between human errors and life events,coping,psychological stress,psychological function,physiological function based on life events’vital influence on human errors,establishing causation mechanism model of coal miners’human errors in the perspective of life events by the researching method of structural equation.The research findings show that life events have significantly positive influence on human errors,with a influential effect value of 0.7945 and a influential effect path of‘‘life events—psychological stress—psychological function—physiological function—human errors’’and‘‘life events—psychological stress—physiological function—human errors’’.展开更多
A periodic inspection policy for a single component system based on a three-stage failure process is proposed, and two different kinds of failures covering "hard" and "human" are considered in the ...A periodic inspection policy for a single component system based on a three-stage failure process is proposed, and two different kinds of failures covering "hard" and "human" are considered in the proposed policy.The system is periodically inspected and inspections are perfect so that they can identify the intended defect.If the severe defect is detected by an inspection, an immediate repair is needed. However, once the system is identified to be in the minor defective state, there are two options. The first is to do nothing till the arrival of identifying the severe defect or hard failure, and the second is to repair immediately. Repair for any defect can renew the system with a limited probability such that the system may fail after repair due to human errors, which is common in many industrial applications. Two models are constructed by minimizing the expected cost per unit time and compared. We provide a numerical example to demonstrate the proposed model.展开更多
The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working en...The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working environment, and also a human error' dominant factors classification model playing a great effect on the safety production of coal mine is established with the application of ant clustering algorithm. The experimental results show that management is the key in the human errors of coal mine.展开更多
The electrical transmission networks are complex systems that are commonly run near their operational limits. Such systems can undergo major disturbances that have serious consequences. Individually, these disturbance...The electrical transmission networks are complex systems that are commonly run near their operational limits. Such systems can undergo major disturbances that have serious consequences. Individually, these disturbances can be attributed to specific causes, such as lightning strikes, ice storms, equipment failure, shorts resulting from untrimmed trees, excessive customer demand, or human errors. In the paper, the human errors from electrical transmission networks of Romanian Power Grid Company over period of 10 years are analyzed. It is hoped that obtained results will provide engineers a better understanding so they can cater to the needs of the human operators when to implement new interfaces for network monitoring tasks, not for the other technical objectives.展开更多
Aim A model of human errors is given. His reliability of action is also determined. Safety countermeasures to prevent human errors are put forward. Methods\ Human system is regarded as a maintainable Markov system. O...Aim A model of human errors is given. His reliability of action is also determined. Safety countermeasures to prevent human errors are put forward. Methods\ Human system is regarded as a maintainable Markov system. On the basis of Markov method, the deduction and calculation in practice are made. Results\ Human errors are the chief factors leading to accidents, and may appear in different models. There are two kinds of states the normal and error state in a process of work. The process of state transfer human system is a Markov process. Human action reliability will be decreased with the continuation of time. Conclusion\ Human errors are described in the quantified form. It will have some significance in terms of theory in the study of the relationship between human action and accidents. Thus helping us in the preven tion of accident occurrence. The safety of a system can be improved in this way.展开更多
This paper discusses some issues on human reliability model of time dependent human behavior. Some results of the crew reliability experiment on Tsinghua training simulator in China are given, Meanwhile, a case of ca...This paper discusses some issues on human reliability model of time dependent human behavior. Some results of the crew reliability experiment on Tsinghua training simulator in China are given, Meanwhile, a case of calculation for human error probability during anticipated transient without scram (ATWS) based on the data drew from the recent experiment is offered.展开更多
The Titanic sunk 113 years ago on April 14-15,after hitting an iceberg,with human error likely causing the ship to wander into those dangerous waters.Today,autonomous systems built on AI can help ships avoid such acci...The Titanic sunk 113 years ago on April 14-15,after hitting an iceberg,with human error likely causing the ship to wander into those dangerous waters.Today,autonomous systems built on AI can help ships avoid such accidents.But could such a system explain to the captain why it was controlling the ship in a certain way?展开更多
A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is cl...A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.展开更多
The International Maritime Organization (IMO) has encouraged its member countries to introduce Formal Safety Assessment (FSA) for ship operations since the end of the last century. FSA can be used through certain form...The International Maritime Organization (IMO) has encouraged its member countries to introduce Formal Safety Assessment (FSA) for ship operations since the end of the last century. FSA can be used through certain formal assessing steps to generate effective recommendations and cautions to control marine risks and improve the safety of ships. On the basis of the brief introduction of FSA, this paper describes the ideas of applying FSA to the prevention of human error in ship operations. It especially discusses the investigation and analysis of the information and data using navigation simulators and puts forward some suggestions for the introduction and development of the FSA research work for safer ship operations.展开更多
Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross...Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross error due to HE.So it is essential to analyze HE in construction.The crucial work of human error analysis(HEA) is the estimation of human error probability(HEP) in construction.The method for estimating HEP,analytic hierarchy process and failure likelihood index method(AHP-FLIM),is introduced in this paper.The method also uses the process of expert judgment within the failure likelihood index method(FLIM).A numerical example shows the effectiveness of the methods proposed.展开更多
Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organizati...Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organization in emergency response attached much attention,but the human reliability was ignored in the research.This igno-rance will negatively affect the reliability of the whole emergency response system.Ship oil-spill accident not only leads to heave losses of money and human lives,but also produces serious environmental pollutions.Consequently more and more international maritime institutions have attached highly importance to it.In an attempt to improve the reliability of emergency response for ship oil-spill accident,a human error analysis model was developed considering features of ship oil-spill accident.The model was developed on a theoretical basis with reference to cognitive psychology and HRA.It analyzed three types of human errors including cognitive error,decisive error and act error and four types factors causing human error including external environment,organization,operator own factor and human-machine interface.Finally an example of ineffective oil-ship accident emergency re-sponse has been analyzed with CREAM(Cognitive reliability and error analysis method),a classical second genera-tion HRA methods,in order to test the feasibility and efficiency of HRA model.展开更多
Software defect prevention is an important way to reduce the defect introduction rate.As the primary cause of software defects,human error can be the key to understanding and preventing software defects.This paper pro...Software defect prevention is an important way to reduce the defect introduction rate.As the primary cause of software defects,human error can be the key to understanding and preventing software defects.This paper proposes a defect prevention approach based on human error mechanisms:DPe HE.The approach includes both knowledge and regulation training in human error prevention.Knowledge training provides programmers with explicit knowledge on why programmers commit errors,what kinds of errors tend to be committed under different circumstances,and how these errors can be prevented.Regulation training further helps programmers to promote the awareness and ability to prevent human errors through practice.The practice is facilitated by a problem solving checklist and a root cause identification checklist.This paper provides a systematic framework that integrates knowledge across disciplines,e.g.,cognitive science,software psychology and software engineering to defend against human errors in software development.Furthermore,we applied this approach in an international company at CMM Level 5 and a software development institution at CMM Level 1 in the Chinese Aviation Industry.The application cases show that the approach is feasible and effective in promoting developers' ability to prevent software defects,independent of process maturity levels.展开更多
AIM: To analyze the clinical factors influencing the human vision corrections via the changing of ocular components of human eye in various applications; and to analyze refractive state via a new effective axial leng...AIM: To analyze the clinical factors influencing the human vision corrections via the changing of ocular components of human eye in various applications; and to analyze refractive state via a new effective axial length.METHODS: An effective eye model was introduced by the ocular components of human eye including refractive indexes, surface radius(r1, r2, R1, R2) and thickness(t, T) of the cornea and lens, the anterior chamber depth(S1) and the vitreous length(S2). Gaussian optics was used to calculate the change rate of refractive error per unit amount of ocular components of a human eye(the rate function M). A new criterion of myopia was presented via an effective axial length.RESULTS: For typical corneal and lens power of 42 and 21.9 diopters, the rate function Mj(j=1 to 6) were calculated for a 1% change of r1, r2, R1, R2, t, T(in diopters) M1=+0.485, M2=-0.063, M3=+0.053, M4=+0.091, M5=+0.012, and M6=-0.021 diopters. For 1.0 mm increase of S1 and S2, the rate functions were M7=+1.35, and M8=-2.67 diopter/mm, respectively. These rate functions were used to analyze the clinical outcomes in various applications including laser in situ keratomileusis surgery, corneal cross linking procedure, femtosecond laser surgery and scleral ablation for accommodation.CONCLUSION: Using Gaussian optics, analytic formulas are presented for the change of refractive power due to various ocular parameter changes. These formulas provide useful clinical guidance in refractive surgery and other related procedures.展开更多
A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data an...A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data and prior information about human performance together,a more accurate and specific HEP estimation can be achieved.For the time-unrelated task without rigorous time restriction,the HEP estimated by the common-used human reliability analysis(HRA) methods or expert judgments is collected as the source of prior information.And for the time-related task with rigorous time restriction,the human error is expressed as non-response making.Therefore,HEP is the time curve of non-response probability(NRP).The prior information is collected from system safety and reliability specifications or by expert judgments.The(joint) posterior distribution of HEP or NRP-related parameter(s) is constructed after prior information has been collected.Based on the posterior distribution,the point or interval estimation of HEP/NRP is obtained.Two illustrative examples are introduced to demonstrate the practicality of the aforementioned approach.展开更多
Human Reliability Analysis(HRA)is an important part in safety assessment of a large complex system.Human Cognitive Reliability(HCR)model is a method of evaluating the probability that operators fail to complete during...Human Reliability Analysis(HRA)is an important part in safety assessment of a large complex system.Human Cognitive Reliability(HCR)model is a method of evaluating the probability that operators fail to complete during diagnostic decision making within a limited time,which is widely used in HRA.In the application of this method,cognitive patterns of humans are required to be considered and classified,and this process often relies on the evaluation opinions of experts which is highly subjective and uncertain.How to effectively express and process this uncertain and subjective information plays a critical role in improving the accuracy and applicability of HCR.In this paper,a new model was proposed to deal with the uncertain information which exists in the processes of cognitive pattern classification in HCR.First,an evaluation panel was constructed based on expert opinions and processing including setting corresponding anchor points and qualitative indicators of different cognitive patterns,and mapping them to fuzzy numbers and unit intervals.Second,based on the evaluation panel,different analysts judge the cognitive pattern types of actual specific events and provide the level of confidence he or she has in the judgments.Finally,the evaluation opinions of multiple analysts were expressed and fused based on the Dempster-Shafer Evidence Theory(DSET),and the fused results were applied to the HCR model to obtain the Human Error Probability(HEP).A case study was used to demonstrate the procedure and effectiveness of the proposed method.展开更多
Human error,an important factor,may lead to serious results in various operational fields.The human factor plays a critical role in the risks and hazards of the maritime industry.A ship can achieve safe navigation whe...Human error,an important factor,may lead to serious results in various operational fields.The human factor plays a critical role in the risks and hazards of the maritime industry.A ship can achieve safe navigation when all operations in the engine room are conducted vigilantly.This paper presents a systematic evaluation of 20 failures in auxiliary systems of marine diesel engines that may be caused by human error.The Cognitive Reliability Error Analysis Method(CREAM)is used to determine the potentiality of human errors in the failures implied thanks to the answers of experts.Using this method,the probabilities of human error on failures were evaluated and the critical ones were emphasized.The measures to be taken for these results will make significant contributions not only to the seafarers but also to the ship owners.展开更多
A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and e...A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and error analysis method(CREAM) to take into account the characteristics of shipping operations. After the influencing factors are identified, Markov method is used to calculate the values of human reliability. The proposed method does not rely on the involvement of experts in the field of human factor nor depend on historical accidents or human error statistics. It is applied to the case of the crew on board of an ocean going dry bulk carrier. The caculated results agree with the actual case, which verifies the validity of the model.展开更多
The case of the Malpasset arch dam failure in 1959 has been widely exposed in scientifc and technical forums and papers.The focus here is on the many traps which have confused the whole chain of bodies and persons inv...The case of the Malpasset arch dam failure in 1959 has been widely exposed in scientifc and technical forums and papers.The focus here is on the many traps which have confused the whole chain of bodies and persons involved,owner,designer,geologist,contractor,up to the state management offcers.When the frst traps were hidden inside geology,many more appeared,as well geotechnical,technical,fortuitous,and administrative.In addition to such factual factors,human and organizational factors may be today easily identifed,when none of them was yet suspected.Both dam safety and rock mechanics benefted from the studies done since the Malpasset case,most of them within one decade.展开更多
To characterize the uncertainty and fuzziness in offshore structural inspection, probability of detection (POD) must be determined. This paper presents the expressions for the POD of four different damage forms mainly...To characterize the uncertainty and fuzziness in offshore structural inspection, probability of detection (POD) must be determined. This paper presents the expressions for the POD of four different damage forms mainly existing in offshore structures. The fuzzy-set theory is applied to estimate human errors through the definition of inspection quality. Expressions of inspection quality are achieved. To verify the validity and correctness of the expressions, the data from an offshore platform field inspection of evaluation results of human errors affecting inspection quality are used to estimate the parameters of the POD. The results show that the present models can provide basis for further study of ofTshore structural inspection reliability.展开更多
Partial safety factors must be evaluated precisely for the given target reliability index to ensure the certain level of structural reliability due to uncertain factors.The current studies of partial safety factors do...Partial safety factors must be evaluated precisely for the given target reliability index to ensure the certain level of structural reliability due to uncertain factors.The current studies of partial safety factors do not consider human error in construction for structural reliability.A mathematically model should be improved to simulate the partial safety coefficient concerned uncertainty factors which concern the effect of human error in construction.We employ the contaminated distribution to obtain the realistic mean value and standard variance of variable of structural parameters which coexist with random error human error.The reasonable partial safety coefficient can be calculated based on the realistic value of structural parameters concerned the effects of random error and gross error.展开更多
基金supported by the National Natural Science Foundation of China (No. 71271206)
文摘In order to effectively decrease the safety accidents caused by coal miners’human errors,this paper probes into the causality between human errors and life events,coping,psychological stress,psychological function,physiological function based on life events’vital influence on human errors,establishing causation mechanism model of coal miners’human errors in the perspective of life events by the researching method of structural equation.The research findings show that life events have significantly positive influence on human errors,with a influential effect value of 0.7945 and a influential effect path of‘‘life events—psychological stress—psychological function—physiological function—human errors’’and‘‘life events—psychological stress—physiological function—human errors’’.
基金the National Natural Science Foundation of China(Nos.71701038 and 71601019)the Ministry of Education Humanities and Social Sciences Planning Fund(No.16YJC630174)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.N172304017)the Hebei Province High School Science and Technology Research Project(No.QN2017104)
文摘A periodic inspection policy for a single component system based on a three-stage failure process is proposed, and two different kinds of failures covering "hard" and "human" are considered in the proposed policy.The system is periodically inspected and inspections are perfect so that they can identify the intended defect.If the severe defect is detected by an inspection, an immediate repair is needed. However, once the system is identified to be in the minor defective state, there are two options. The first is to do nothing till the arrival of identifying the severe defect or hard failure, and the second is to repair immediately. Repair for any defect can renew the system with a limited probability such that the system may fail after repair due to human errors, which is common in many industrial applications. Two models are constructed by minimizing the expected cost per unit time and compared. We provide a numerical example to demonstrate the proposed model.
文摘The human error mechanism in coal mine safety is analyzed specifically from safety psychological and physiological factors, worker' s quality, safety management, safety education, mechanical equipment, and working environment, and also a human error' dominant factors classification model playing a great effect on the safety production of coal mine is established with the application of ant clustering algorithm. The experimental results show that management is the key in the human errors of coal mine.
文摘The electrical transmission networks are complex systems that are commonly run near their operational limits. Such systems can undergo major disturbances that have serious consequences. Individually, these disturbances can be attributed to specific causes, such as lightning strikes, ice storms, equipment failure, shorts resulting from untrimmed trees, excessive customer demand, or human errors. In the paper, the human errors from electrical transmission networks of Romanian Power Grid Company over period of 10 years are analyzed. It is hoped that obtained results will provide engineers a better understanding so they can cater to the needs of the human operators when to implement new interfaces for network monitoring tasks, not for the other technical objectives.
文摘Aim A model of human errors is given. His reliability of action is also determined. Safety countermeasures to prevent human errors are put forward. Methods\ Human system is regarded as a maintainable Markov system. On the basis of Markov method, the deduction and calculation in practice are made. Results\ Human errors are the chief factors leading to accidents, and may appear in different models. There are two kinds of states the normal and error state in a process of work. The process of state transfer human system is a Markov process. Human action reliability will be decreased with the continuation of time. Conclusion\ Human errors are described in the quantified form. It will have some significance in terms of theory in the study of the relationship between human action and accidents. Thus helping us in the preven tion of accident occurrence. The safety of a system can be improved in this way.
文摘This paper discusses some issues on human reliability model of time dependent human behavior. Some results of the crew reliability experiment on Tsinghua training simulator in China are given, Meanwhile, a case of calculation for human error probability during anticipated transient without scram (ATWS) based on the data drew from the recent experiment is offered.
文摘The Titanic sunk 113 years ago on April 14-15,after hitting an iceberg,with human error likely causing the ship to wander into those dangerous waters.Today,autonomous systems built on AI can help ships avoid such accidents.But could such a system explain to the captain why it was controlling the ship in a certain way?
文摘A novel approach for engineering application to human error probability quantification is presented based on an overview of the existing human reliability analysis methods. The set of performance shaping factors is classified as two subsets of dominant factors and adjusting factors respectively. Firstly, the dominant factors are used to determine the probabilities of three behavior modes. The basic probability and its interval of human error for each behavior mode are given. Secondly, the basic probability and its interval are modified by the adjusting factors, and the total probability of human error is calculated by a total probability formula. Finally, a simple example is introduced, and the consistency and validity of the presented approach are illustrated.
文摘The International Maritime Organization (IMO) has encouraged its member countries to introduce Formal Safety Assessment (FSA) for ship operations since the end of the last century. FSA can be used through certain formal assessing steps to generate effective recommendations and cautions to control marine risks and improve the safety of ships. On the basis of the brief introduction of FSA, this paper describes the ideas of applying FSA to the prevention of human error in ship operations. It especially discusses the investigation and analysis of the information and data using navigation simulators and puts forward some suggestions for the introduction and development of the FSA research work for safer ship operations.
文摘Human error(HE) is the most important factor influencing on structural safety because its effect often exceeds the random deviation.Large numbers of facts have shown that structural failures may be caused by the gross error due to HE.So it is essential to analyze HE in construction.The crucial work of human error analysis(HEA) is the estimation of human error probability(HEP) in construction.The method for estimating HEP,analytic hierarchy process and failure likelihood index method(AHP-FLIM),is introduced in this paper.The method also uses the process of expert judgment within the failure likelihood index method(FLIM).A numerical example shows the effectiveness of the methods proposed.
文摘Emergency response for ship oil-spill accident should be regarded as a dynamic complex system consisting of human,machine and organization.Recently the reliability evaluation and optimization of machine and organization in emergency response attached much attention,but the human reliability was ignored in the research.This igno-rance will negatively affect the reliability of the whole emergency response system.Ship oil-spill accident not only leads to heave losses of money and human lives,but also produces serious environmental pollutions.Consequently more and more international maritime institutions have attached highly importance to it.In an attempt to improve the reliability of emergency response for ship oil-spill accident,a human error analysis model was developed considering features of ship oil-spill accident.The model was developed on a theoretical basis with reference to cognitive psychology and HRA.It analyzed three types of human errors including cognitive error,decisive error and act error and four types factors causing human error including external environment,organization,operator own factor and human-machine interface.Finally an example of ineffective oil-ship accident emergency re-sponse has been analyzed with CREAM(Cognitive reliability and error analysis method),a classical second genera-tion HRA methods,in order to test the feasibility and efficiency of HRA model.
文摘Software defect prevention is an important way to reduce the defect introduction rate.As the primary cause of software defects,human error can be the key to understanding and preventing software defects.This paper proposes a defect prevention approach based on human error mechanisms:DPe HE.The approach includes both knowledge and regulation training in human error prevention.Knowledge training provides programmers with explicit knowledge on why programmers commit errors,what kinds of errors tend to be committed under different circumstances,and how these errors can be prevented.Regulation training further helps programmers to promote the awareness and ability to prevent human errors through practice.The practice is facilitated by a problem solving checklist and a root cause identification checklist.This paper provides a systematic framework that integrates knowledge across disciplines,e.g.,cognitive science,software psychology and software engineering to defend against human errors in software development.Furthermore,we applied this approach in an international company at CMM Level 5 and a software development institution at CMM Level 1 in the Chinese Aviation Industry.The application cases show that the approach is feasible and effective in promoting developers' ability to prevent software defects,independent of process maturity levels.
基金Supported by an Internal Research of New Vision Inc.,Taipei,Taiwan
文摘AIM: To analyze the clinical factors influencing the human vision corrections via the changing of ocular components of human eye in various applications; and to analyze refractive state via a new effective axial length.METHODS: An effective eye model was introduced by the ocular components of human eye including refractive indexes, surface radius(r1, r2, R1, R2) and thickness(t, T) of the cornea and lens, the anterior chamber depth(S1) and the vitreous length(S2). Gaussian optics was used to calculate the change rate of refractive error per unit amount of ocular components of a human eye(the rate function M). A new criterion of myopia was presented via an effective axial length.RESULTS: For typical corneal and lens power of 42 and 21.9 diopters, the rate function Mj(j=1 to 6) were calculated for a 1% change of r1, r2, R1, R2, t, T(in diopters) M1=+0.485, M2=-0.063, M3=+0.053, M4=+0.091, M5=+0.012, and M6=-0.021 diopters. For 1.0 mm increase of S1 and S2, the rate functions were M7=+1.35, and M8=-2.67 diopter/mm, respectively. These rate functions were used to analyze the clinical outcomes in various applications including laser in situ keratomileusis surgery, corneal cross linking procedure, femtosecond laser surgery and scleral ablation for accommodation.CONCLUSION: Using Gaussian optics, analytic formulas are presented for the change of refractive power due to various ocular parameter changes. These formulas provide useful clinical guidance in refractive surgery and other related procedures.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20114307120032)the National Natural Science Foundation of China(71201167)
文摘A Bayesian method for estimating human error probability(HEP) is presented.The main idea of the method is incorporating human performance data into the HEP estimation process.By integrating human performance data and prior information about human performance together,a more accurate and specific HEP estimation can be achieved.For the time-unrelated task without rigorous time restriction,the HEP estimated by the common-used human reliability analysis(HRA) methods or expert judgments is collected as the source of prior information.And for the time-related task with rigorous time restriction,the human error is expressed as non-response making.Therefore,HEP is the time curve of non-response probability(NRP).The prior information is collected from system safety and reliability specifications or by expert judgments.The(joint) posterior distribution of HEP or NRP-related parameter(s) is constructed after prior information has been collected.Based on the posterior distribution,the point or interval estimation of HEP/NRP is obtained.Two illustrative examples are introduced to demonstrate the practicality of the aforementioned approach.
基金supported by Shanghai Natural Science Foundation(Grant No.19ZR1420700)sponsored by Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘Human Reliability Analysis(HRA)is an important part in safety assessment of a large complex system.Human Cognitive Reliability(HCR)model is a method of evaluating the probability that operators fail to complete during diagnostic decision making within a limited time,which is widely used in HRA.In the application of this method,cognitive patterns of humans are required to be considered and classified,and this process often relies on the evaluation opinions of experts which is highly subjective and uncertain.How to effectively express and process this uncertain and subjective information plays a critical role in improving the accuracy and applicability of HCR.In this paper,a new model was proposed to deal with the uncertain information which exists in the processes of cognitive pattern classification in HCR.First,an evaluation panel was constructed based on expert opinions and processing including setting corresponding anchor points and qualitative indicators of different cognitive patterns,and mapping them to fuzzy numbers and unit intervals.Second,based on the evaluation panel,different analysts judge the cognitive pattern types of actual specific events and provide the level of confidence he or she has in the judgments.Finally,the evaluation opinions of multiple analysts were expressed and fused based on the Dempster-Shafer Evidence Theory(DSET),and the fused results were applied to the HCR model to obtain the Human Error Probability(HEP).A case study was used to demonstrate the procedure and effectiveness of the proposed method.
文摘Human error,an important factor,may lead to serious results in various operational fields.The human factor plays a critical role in the risks and hazards of the maritime industry.A ship can achieve safe navigation when all operations in the engine room are conducted vigilantly.This paper presents a systematic evaluation of 20 failures in auxiliary systems of marine diesel engines that may be caused by human error.The Cognitive Reliability Error Analysis Method(CREAM)is used to determine the potentiality of human errors in the failures implied thanks to the answers of experts.Using this method,the probabilities of human error on failures were evaluated and the critical ones were emphasized.The measures to be taken for these results will make significant contributions not only to the seafarers but also to the ship owners.
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB046804)National Natural Science Foundation of China(No.51239008)+1 种基金Foundation of State Key Laboratory of Marine Engineering of Shanghai Jiaotong UniversityFoundation for Innovative Research Groups of National Natural Science Foundation of China(No.51021004)
文摘A simplified bi-variable human error probability calculation method is developed by incorporating two common performance condition( CPC) factors, which are modified from factors employed in cognitive reliability and error analysis method(CREAM) to take into account the characteristics of shipping operations. After the influencing factors are identified, Markov method is used to calculate the values of human reliability. The proposed method does not rely on the involvement of experts in the field of human factor nor depend on historical accidents or human error statistics. It is applied to the case of the crew on board of an ocean going dry bulk carrier. The caculated results agree with the actual case, which verifies the validity of the model.
文摘The case of the Malpasset arch dam failure in 1959 has been widely exposed in scientifc and technical forums and papers.The focus here is on the many traps which have confused the whole chain of bodies and persons involved,owner,designer,geologist,contractor,up to the state management offcers.When the frst traps were hidden inside geology,many more appeared,as well geotechnical,technical,fortuitous,and administrative.In addition to such factual factors,human and organizational factors may be today easily identifed,when none of them was yet suspected.Both dam safety and rock mechanics benefted from the studies done since the Malpasset case,most of them within one decade.
文摘To characterize the uncertainty and fuzziness in offshore structural inspection, probability of detection (POD) must be determined. This paper presents the expressions for the POD of four different damage forms mainly existing in offshore structures. The fuzzy-set theory is applied to estimate human errors through the definition of inspection quality. Expressions of inspection quality are achieved. To verify the validity and correctness of the expressions, the data from an offshore platform field inspection of evaluation results of human errors affecting inspection quality are used to estimate the parameters of the POD. The results show that the present models can provide basis for further study of ofTshore structural inspection reliability.
文摘Partial safety factors must be evaluated precisely for the given target reliability index to ensure the certain level of structural reliability due to uncertain factors.The current studies of partial safety factors do not consider human error in construction for structural reliability.A mathematically model should be improved to simulate the partial safety coefficient concerned uncertainty factors which concern the effect of human error in construction.We employ the contaminated distribution to obtain the realistic mean value and standard variance of variable of structural parameters which coexist with random error human error.The reasonable partial safety coefficient can be calculated based on the realistic value of structural parameters concerned the effects of random error and gross error.