期刊文献+
共找到828篇文章
< 1 2 42 >
每页显示 20 50 100
A Novel Attention-Based Parallel Blocks Deep Architecture for Human Action Recognition
1
作者 Yasir Khan Jadoon Yasir Noman Khalid +4 位作者 Muhammad Attique Khan Jungpil Shin Fatimah Alhayan Hee-Chan Cho Byoungchol Chang 《Computer Modeling in Engineering & Sciences》 2025年第7期1143-1164,共22页
Real-time surveillance is attributed to recognizing the variety of actions performed by humans.Human Action Recognition(HAR)is a technique that recognizes human actions from a video stream.A range of variations in hum... Real-time surveillance is attributed to recognizing the variety of actions performed by humans.Human Action Recognition(HAR)is a technique that recognizes human actions from a video stream.A range of variations in human actions makes it difficult to recognize with considerable accuracy.This paper presents a novel deep neural network architecture called Attention RB-Net for HAR using video frames.The input is provided to the model in the form of video frames.The proposed deep architecture is based on the unique structuring of residual blocks with several filter sizes.Features are extracted from each frame via several operations with specific parameters defined in the presented novel Attention-based Residual Bottleneck(Attention-RB)DCNN architecture.A fully connected layer receives an attention-based features matrix,and final classification is performed.Several hyperparameters of the proposed model are initialized using Bayesian Optimization(BO)and later utilized in the trained model for testing.In testing,features are extracted from the self-attention layer and passed to neural network classifiers for the final action classification.Two highly cited datasets,HMDB51 and UCF101,were used to validate the proposed architecture and obtained an average accuracy of 87.70%and 97.30%,respectively.The deep convolutional neural network(DCNN)architecture is compared with state-of-the-art(SOTA)methods,including pre-trained models,inside blocks,and recently published techniques,and performs better. 展开更多
关键词 human action recognition self-attention video streams residual bottleneck classification neural networks
在线阅读 下载PDF
Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization
2
作者 Ahmad Yahiya Ahmad Bani Ahmad Jafar Alzubi +3 位作者 Sophers James Vincent Omollo Nyangaresi Chanthirasekaran Kutralakani Anguraju Krishnan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4791-4812,共22页
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e... In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach. 展开更多
关键词 human action recognition multi-modal sensor data and signals adaptive hybrid deep attentive network enhanced archerfish hunting optimizer 1D convolutional neural network gated recurrent units
在线阅读 下载PDF
Recognition of Human Actions through Speech or Voice Using Machine Learning Techniques
3
作者 Oscar Peña-Cáceres Henry Silva-Marchan +1 位作者 Manuela Albert Miriam Gil 《Computers, Materials & Continua》 SCIE EI 2023年第11期1873-1891,共19页
The development of artificial intelligence(AI)and smart home technologies has driven the need for speech recognition-based solutions.This demand stems from the quest for more intuitive and natural interaction between ... The development of artificial intelligence(AI)and smart home technologies has driven the need for speech recognition-based solutions.This demand stems from the quest for more intuitive and natural interaction between users and smart devices in their homes.Speech recognition allows users to control devices and perform everyday actions through spoken commands,eliminating the need for physical interfaces or touch screens and enabling specific tasks such as turning on or off the light,heating,or lowering the blinds.The purpose of this study is to develop a speech-based classification model for recognizing human actions in the smart home.It seeks to demonstrate the effectiveness and feasibility of using machine learning techniques in predicting categories,subcategories,and actions from sentences.A dataset labeled with relevant information about categories,subcategories,and actions related to human actions in the smart home is used.The methodology uses machine learning techniques implemented in Python,extracting features using CountVectorizer to convert sentences into numerical representations.The results show that the classification model is able to accurately predict categories,subcategories,and actions based on sentences,with 82.99%accuracy for category,76.19%accuracy for subcategory,and 90.28%accuracy for action.The study concludes that using machine learning techniques is effective for recognizing and classifying human actions in the smart home,supporting its feasibility in various scenarios and opening new possibilities for advanced natural language processing systems in the field of AI and smart homes. 展开更多
关键词 AI machine learning smart home human action recognition
在线阅读 下载PDF
Two-Stream Deep Learning Architecture-Based Human Action Recognition
4
作者 Faheem Shehzad Muhammad Attique Khan +5 位作者 Muhammad Asfand E.Yar Muhammad Sharif Majed Alhaisoni Usman Tariq Arnab Majumdar Orawit Thinnukool 《Computers, Materials & Continua》 SCIE EI 2023年第3期5931-5949,共19页
Human action recognition(HAR)based on Artificial intelligence reasoning is the most important research area in computer vision.Big breakthroughs in this field have been observed in the last few years;additionally,the ... Human action recognition(HAR)based on Artificial intelligence reasoning is the most important research area in computer vision.Big breakthroughs in this field have been observed in the last few years;additionally,the interest in research in this field is evolving,such as understanding of actions and scenes,studying human joints,and human posture recognition.Many HAR techniques are introduced in the literature.Nonetheless,the challenge of redundant and irrelevant features reduces recognition accuracy.They also faced a few other challenges,such as differing perspectives,environmental conditions,and temporal variations,among others.In this work,a deep learning and improved whale optimization algorithm based framework is proposed for HAR.The proposed framework consists of a few core stages i.e.,frames initial preprocessing,fine-tuned pre-trained deep learning models through transfer learning(TL),features fusion using modified serial based approach,and improved whale optimization based best features selection for final classification.Two pre-trained deep learning models such as InceptionV3 and Resnet101 are fine-tuned and TL is employed to train on action recognition datasets.The fusion process increases the length of feature vectors;therefore,improved whale optimization algorithm is proposed and selects the best features.The best selected features are finally classified usingmachine learning(ML)classifiers.Four publicly accessible datasets such as Ut-interaction,Hollywood,Free Viewpoint Action Recognition usingMotion History Volumes(IXMAS),and centre of computer vision(UCF)Sports,are employed and achieved the testing accuracy of 100%,99.9%,99.1%,and 100%respectively.Comparison with state of the art techniques(SOTA),the proposed method showed the improved accuracy. 展开更多
关键词 human action recognition deep learning transfer learning fusion of multiple features features optimization
在线阅读 下载PDF
A Novel Human Action Recognition Algorithm Based on Decision Level Multi-Feature Fusion 被引量:4
5
作者 SONG Wei LIU Ningning +1 位作者 YANG Guosheng YANG Pei 《China Communications》 SCIE CSCD 2015年第S2期93-102,共10页
In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision lev... In order to take advantage of the logical structure of video sequences and improve the recognition accuracy of the human action, a novel hybrid human action detection method based on three descriptors and decision level fusion is proposed. Firstly, the minimal 3D space region of human action region is detected by combining frame difference method and Vi BE algorithm, and the three-dimensional histogram of oriented gradient(HOG3D) is extracted. At the same time, the characteristics of global descriptors based on frequency domain filtering(FDF) and the local descriptors based on spatial-temporal interest points(STIP) are extracted. Principal component analysis(PCA) is implemented to reduce the dimension of the gradient histogram and the global descriptor, and bag of words(BoW) model is applied to describe the local descriptors based on STIP. Finally, a linear support vector machine(SVM) is used to create a new decision level fusion classifier. Some experiments are done to verify the performance of the multi-features, and the results show that they have good representation ability and generalization ability. Otherwise, the proposed scheme obtains very competitive results on the well-known datasets in terms of mean average precision. 展开更多
关键词 human action RECOGNITION FEATURE FUSION HOG3D
在线阅读 下载PDF
Silhouettes Based Human Action Recognition in Video via Procrustes Analysis and Fisher Vector Coding 被引量:2
6
作者 CAI Jiaxin ZHONG Ranxu LI Junjie 《Journal of Donghua University(English Edition)》 EI CAS 2019年第2期140-148,共9页
This paper proposes a framework for human action recognition based on procrustes analysis and Fisher vector coding(FVC).Firstly,we applied a pose feature extracted from silhouette image by employing Procrustes analysi... This paper proposes a framework for human action recognition based on procrustes analysis and Fisher vector coding(FVC).Firstly,we applied a pose feature extracted from silhouette image by employing Procrustes analysis and local preserving projection(LPP).Secondly,the extracted feature can preserve the discriminative shape information and local manifold structure of human pose and is invariant to translation,rotation and scaling.Finally,after the pose feature was extracted,a recognition framework based on FVC and multi-class supporting vector machine was employed to classify the human action.Experimental results on benchmarks demonstrate the effectiveness of the proposed method. 展开更多
关键词 human action recognition PROCRUSTES analysis local preserving projection FISHER VECTOR coding(FVC)
在线阅读 下载PDF
Hierarchical Human Action Recognition with Self-Selection Classifiers via Skeleton Data
7
作者 Ben-Yue Su Huang Wu +1 位作者 Min Sheng Chuan-Sheng Shen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第11期633-640,共8页
Human action recognition has become one of the most active research topics in human-computer interaction and artificial intelligence, and has attracted much attention. Here, we employ a low-cost optical sensor Kinect ... Human action recognition has become one of the most active research topics in human-computer interaction and artificial intelligence, and has attracted much attention. Here, we employ a low-cost optical sensor Kinect to capture the action information of the human skeleton. We then propose a two-level hierarchical human action recognition model with self-selection classifiers via skeleton data. Especially different optimal classifiers are selected by probability voting mechanism and 10 times 10-fold cross validation at different coarse grained levels. Extensive simulations on a well-known open dataset and results demonstrate that our proposed method is efficient in human action recognition, achieving 94.19%the average recognition rate and 95.61% the best rate. 展开更多
关键词 human action RECOGNITION HIERARCHICAL ARCHITECTURE model SELF-SELECTION CLASSIFIERS optimal classification unit
原文传递
Combining Multi-scale Directed Depth Motion Maps and Log-Gabor Filters for Human Action Recognition
8
作者 Xiaoye Zhao Xunsheng Ji +1 位作者 Yuanxiang Li Li Peng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期89-96,共8页
Recognition of the human actions by computer vision has become an active research area in recent years. Due to the speed and the high similarity of the actions, the current algorithms cannot get high recognition rate.... Recognition of the human actions by computer vision has become an active research area in recent years. Due to the speed and the high similarity of the actions, the current algorithms cannot get high recognition rate. A new recognition method of the human action is proposed with the multi-scale directed depth motion maps(MsdDMMs) and Log-Gabor filters. According to the difference between the speed and time order of an action, MsdDMMs is proposed under the energy framework. Meanwhile, Log-Gabor is utilized to describe the texture details of MsdDMMs for the motion characteristics. It can easily satisfy both the texture characterization and the visual features of human eye. Furthermore, the collaborative representation is employed as action recognition by the classification. Experimental results show that the proposed algorithm, which is applied in the MSRAction3 D dataset and MSRGesture3 D dataset, can achieve the accuracy of 95.79% and 96.43% respectively. It also has higher accuracy than the existing algorithms, such as super normal vector(SNV), hierarchical recurrent neural network(Hierarchical RNN). 展开更多
关键词 human action recognition DEPTH MOTION MAPS LOG-GABOR filters collaborative representation based CLASSIFIER
在线阅读 下载PDF
Policy Evolution and Development Prospects of Human Rights Education from the Four Editions of the Human Rights Action Plan of China
9
作者 HOU Bo 《The Journal of Human Rights》 2025年第4期945-977,共33页
As a public policy,the Human Rights Action Plan of China provides a clear roadmap for achieving the phased goals of human rights education development.The evolution of human rights education policies over the four edi... As a public policy,the Human Rights Action Plan of China provides a clear roadmap for achieving the phased goals of human rights education development.The evolution of human rights education policies over the four editions demonstrates a clear and distinct logic of progression:human rights education in primary and secondary schools has shifted from fostering students’awareness of human rights to establishing human rights values;human rights education in higher education has transitioned from the construction of single human rights course to the systematic development of human rights disciplines;human rights knowledge training has evolved from disseminating basic human rights knowledge among legal and political workers to cultivating a human rights mindset among public officials;and the popularization of human rights knowledge has moved from enhancing communication effectiveness to strengthening cultural confidence in human rights.These shifts reflect the characteristics of the policy evolution of human rights education,which are unified in their gradual and continuous nature,responsiveness and forward-looking nature,and value-oriented and contemporary nature.Fundamentally,the gap between the current state of human rights education development and policy goals serves as the intrinsic driving force for the evolution of human rights education policies.While the external factors influencing the evolution of policy content mainly include the human rights cause’s contemporary context,historical achievements,and current needs.Looking ahead to the future development of human rights education,it is essential to continuously innovate human rights teaching methods,enrich the content of human rights education,improve relevant institutional guarantee mechanisms,strengthen the construction of multi-stakeholder collaborative human rights education teams,compile and publish high-quality human rights textbooks,and increase the intensity of human rights knowledge training for journalists,in order to create a favorable public opinion atmosphere and cultural environment for the development of China’s human rights cause in the new era. 展开更多
关键词 human Rights action Plan of China public policy analysis human rights education human rights communication human rights culture
原文传递
Dual-channel graph convolutional network with multi-order information fusion for skeleton-based action recognition
10
作者 JIANG Tao HU Zhentao +2 位作者 WANG Kaige QIU Qian REN Xing 《High Technology Letters》 2025年第3期257-265,共9页
Skeleton-based human action recognition focuses on identifying actions from dynamic skeletal data,which contains both temporal and spatial characteristics.However,this approach faces chal-lenges such as viewpoint vari... Skeleton-based human action recognition focuses on identifying actions from dynamic skeletal data,which contains both temporal and spatial characteristics.However,this approach faces chal-lenges such as viewpoint variations,low recognition accuracy,and high model complexity.Skeleton-based graph convolutional network(GCN)generally outperform other deep learning methods in rec-ognition accuracy.However,they often underutilize temporal features and suffer from high model complexity,leading to increased training and validation costs,especially on large-scale datasets.This paper proposes a dual-channel graph convolutional network with multi-order information fusion(DM-AGCN)for human action recognition.The network integrates high frame rate skeleton chan-nels to capture action dynamics and low frame rate channels to preserve static semantic information,effectively balancing temporal and spatial features.This dual-channel architecture allows for separate processing of temporal and spatial information.Additionally,DM-AGCN extracts joint keypoints and bidirectional bone vectors from skeleton sequences,and employs a three-stream graph convolu-tional structure to extract features that describe human movement.Experimental results on the NTU-RGB+D dataset demonstrate that DM-AGCN achieves an accuracy of 89.4%on the X-Sub and 95.8%on the X-View,while reducing model complexity to 3.68 GFLOPs(Giga Floating-point Oper-ations Per Second).On the Kinetics-Skeleton dataset,the model achieves a Top-1 accuracy of 37.2%and a Top-5 accuracy of 60.3%,further validating its effectiveness across different benchmarks. 展开更多
关键词 human action recognition graph convolutional network spatiotemporal fusion feature extraction
在线阅读 下载PDF
A Survey of Human Action Recognition and Posture Prediction 被引量:3
11
作者 Nan Ma Zhixuan Wu +4 位作者 Yiu-ming Cheung Yuchen Guo Yue Gao Jiahong Li Beiyan Jiang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第6期973-1001,共29页
Human action recognition and posture prediction aim to recognize and predict respectively the action and postures of persons in videos.They are both active research topics in computer vision community,which have attra... Human action recognition and posture prediction aim to recognize and predict respectively the action and postures of persons in videos.They are both active research topics in computer vision community,which have attracted considerable attention from academia and industry.They are also the precondition for intelligent interaction and human-computer cooperation,and they help the machine perceive the external environment.In the past decade,tremendous progress has been made in the field,especially after the emergence of deep learning technologies.Hence,it is necessary to make a comprehensive review of recent developments.In this paper,firstly,we attempt to present the background,and then discuss research progresses.Secondly,we introduce datasets,various typical feature representation methods,and explore advanced human action recognition and posture prediction algorithms.Finally,facing the challenges in the field,this paper puts forward the research focus,and introduces the importance of action recognition and posture prediction by taking interactive cognition in self-driving vehicle as an example. 展开更多
关键词 human action recognition posture prediction computer vision human-computer cooperation interactive cognition
原文传递
Distribution of action movements (DAM): a descriptor for human action recognition 被引量:1
12
作者 Franco RONCHETTI Facundo QUIROGA Laura LANZARINI Cesar ESTREBOU 《Frontiers of Computer Science》 SCIE EI CSCD 2015年第6期956-965,共10页
Human action recognition from skeletal data is an important and active area of research in which the state of the art has not yet achieved near-perfect accuracy on many well- known datasets. In this paper, we introduc... Human action recognition from skeletal data is an important and active area of research in which the state of the art has not yet achieved near-perfect accuracy on many well- known datasets. In this paper, we introduce the Distribution of Action Movements Descriptor, a novel action descriptor based on the distribution of the directions of the motions of the joints between frames, over the set of all possible mo- tions in the dataset. The descriptor is computed as a normal- ized histogram over a set of representative directions of the joints, which are in turn obtained via clustering. While the descriptor is global in the sense that it represents the overall distribution of movement directions of an action, it is able to partially retain its temporal structure by applying a window- ing scheme. The descriptor, together with performs several state-of-the-art known datasets. a standard classifier, out- techniques on many well- 展开更多
关键词 human action recognition DESCRIPTOR Prob-SOM MSRC12 action3D
原文传递
Human Action Recognition Using Difference of Gaussian and Difference of Wavelet 被引量:1
13
作者 Gopampallikar Vinoda Reddy Kongara Deepika +4 位作者 Lakshmanan Malliga Duraivelu Hemanand Chinnadurai Senthilkumar Subburayalu Gopalakrishnan Yousef Farhaoui 《Big Data Mining and Analytics》 EI CSCD 2023年第3期336-346,共11页
Human Action Recognition(HAR)attempts to recognize the human action from images and videos.The major challenge in HAR is the design of an action descriptor that makes the HAR system robust for different environments.A... Human Action Recognition(HAR)attempts to recognize the human action from images and videos.The major challenge in HAR is the design of an action descriptor that makes the HAR system robust for different environments.A novel action descriptor is proposed in this study,based on two independent spatial and spectral filters.The proposed descriptor uses a Difference of Gaussian(DoG)filter to extract scale-invariant features and a Difference of Wavelet(DoW)filter to extract spectral information.To create a composite feature vector for a particular test action picture,the Discriminant of Guassian(DoG)and Difference of Wavelet(DoW)features are combined.Linear Discriminant Analysis(LDA),a widely used dimensionality reduction technique,is also used to eliminate duplicate data.Finally,a closest neighbor method is used to classify the dataset.Weizmann and UCF 11 datasets were used to run extensive simulations of the suggested strategy,and the accuracy assessed after the simulations were run on Weizmann datasets for five-fold cross validation is shown to perform well.The average accuracy of DoG+DoW is observed as 83.6635%while the average accuracy of Discrinanat of Guassian(DoG)and Difference of Wavelet(DoW)is observed as 80.2312%and 77.4215%,respectively.The average accuracy measured after the simulation of proposed methods over UCF 11 action dataset for five-fold cross validation DoG+DoW is observed as 62.5231%while the average accuracy of Difference of Guassian(DoG)and Difference of Wavelet(DoW)is observed as 60.3214%and 58.1247%,respectively.From the above accuracy observations,the accuracy of Weizmann is high compared to the accuracy of UCF 11,hence verifying the effectiveness in the improvisation of recognition accuracy. 展开更多
关键词 human action recognition difference of Gaussian difference of wavelet linear discriminant analysis Weizmann UCF 11 ACCURACY
原文传递
Intelligent 3D garment system of the human body based on deep spiking neural network 被引量:1
14
作者 Minghua JIANG Zhangyuan TIAN +5 位作者 Chenyu YU Yankang SHI Li LIU Tao PENG Xinrong HU Feng YU 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期43-55,共13页
Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables dom... Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion. 展开更多
关键词 Intelligent garment system Internet of things human action recognition Deep learning 3D visualization
在线阅读 下载PDF
SlowFast Based Real-Time Human Motion Recognition with Action Localization
15
作者 Gyu-Il Kim Hyun Yoo Kyungyong Chung 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2135-2152,共18页
Artificial intelligence is increasingly being applied in the field of video analysis,particularly in the area of public safety where video surveillance equipment such as closed-circuit television(CCTV)is used and auto... Artificial intelligence is increasingly being applied in the field of video analysis,particularly in the area of public safety where video surveillance equipment such as closed-circuit television(CCTV)is used and automated analysis of video information is required.However,various issues such as data size limitations and low processing speeds make real-time extraction of video data challenging.Video analysis technology applies object classification,detection,and relationship analysis to continuous 2D frame data,and the various meanings within the video are thus analyzed based on the extracted basic data.Motion recognition is key in this analysis.Motion recognition is a challenging field that analyzes human body movements,requiring the interpretation of complex movements of human joints and the relationships between various objects.The deep learning-based human skeleton detection algorithm is a representative motion recognition algorithm.Recently,motion analysis models such as the SlowFast network algorithm,have also been developed with excellent performance.However,these models do not operate properly in most wide-angle video environments outdoors,displaying low response speed,as expected from motion classification extraction in environments associated with high-resolution images.The proposed method achieves high level of extraction and accuracy by improving SlowFast’s input data preprocessing and data structure methods.The input data are preprocessed through object tracking and background removal using YOLO and DeepSORT.A higher performance than that of a single model is achieved by improving the existing SlowFast’s data structure into a frame unit structure.Based on the confusion matrix,accuracies of 70.16%and 70.74%were obtained for the existing SlowFast and proposed model,respectively,indicating a 0.58%increase in accuracy.Comparing detection,based on behavioral classification,the existing SlowFast detected 2,341,164 cases,whereas the proposed model detected 3,119,323 cases,which is an increase of 33.23%. 展开更多
关键词 Artificial intelligence convolutional neural network video analysis human action recognition skeleton extraction
在线阅读 下载PDF
Human action recognition using a convolutional neural network based on skeleton heatmaps from two-stage pose estimation
16
作者 Ruiqi Sun Qin Zhang +2 位作者 Chuang Luo Jiamin Guo Hui Chai 《Biomimetic Intelligence & Robotics》 2022年第3期22-33,共12页
Human action recognition based on skeleton information has been extensively used in various areas,such as human-computer interaction.In this paper,we extracted human skeleton data by constructing a two-stage human pos... Human action recognition based on skeleton information has been extensively used in various areas,such as human-computer interaction.In this paper,we extracted human skeleton data by constructing a two-stage human pose estimation model,which combined the improved single shot detector(SSD)algorithm with convolutional pose machines(CPM)to obtain human skeleton heatmaps.The backbone of the SSD algorithm was replaced with ResNet,which can characterize images effectively.In addition,we designed multiscale transformation rules for CPM to fuse the information of different scales and a convolutional neural network for the classification of the skeleton keypoints heatmaps to complete action recognition.Indoor and outdoor experiments were conducted on the Caster Moma mobile robot platform,and without an external remote control,the real-time movement of the robot was controlled by the leader through command actions. 展开更多
关键词 Convolutional neural networks human detection human pose estimation human action recognition
原文传递
National Human Rights Action Plan of China (2009-2010) 被引量:7
17
作者 The Information Off ice of the State Council published the National Human Rights Action Plan of China 《The Journal of Human Rights》 2009年第3期5-20,共16页
Introduction The realization of human rights in the broadest sense has been a long-cherished ideal of mankind and also a longpursued goal of the Chinese government and people.
关键词 National human Rights action Plan of China 2010
原文传递
Human-Object Interaction Recognition Based on Modeling Context 被引量:1
18
作者 Shuyang Li Wei Liang Qun Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期215-222,共8页
This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion b... This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method. 展开更多
关键词 human-object interaction action recognition object recognition modeling context
在线阅读 下载PDF
National Human Rights Action Plan of China (2012-2015) 被引量:3
19
作者 INFORMATION OFFICE OF THE STATE COUNCIL OF THE PEOPLE’S REPUBLIC OF CHINA 《The Journal of Human Rights》 2012年第4期2-18,共17页
The formulation of the National Human Rights Action Plan is an impor- tant measure taken by theChinese government to ensure the implementation of the constitutional principle of respecting and safeguarding human right... The formulation of the National Human Rights Action Plan is an impor- tant measure taken by theChinese government to ensure the implementation of the constitutional principle of respecting and safeguarding human rights. It is of great significance to promoting scientific development and social harmony, and to achieving the great objective of building a moderately prosperous society in an all-round way. 展开更多
关键词 National human Rights action Plan of China WILL
原文传递
上一页 1 2 42 下一页 到第
使用帮助 返回顶部