Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ...Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.展开更多
A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numeri...A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis.展开更多
The possible horizomal transfer of transgenes is of great concern when the transgenic plants are released imo the field. To test the possible transfer of nptII of transgenic trees into soil bacteria, we have used a st...The possible horizomal transfer of transgenes is of great concern when the transgenic plants are released imo the field. To test the possible transfer of nptII of transgenic trees into soil bacteria, we have used a stool DNA preparation kit to isolate the DNA from the soils in the rhizospheres of two non- and eight transgenic Eucalyptus camaldulensis trees. All the samples have provided the corresponding PCR products in the amplification with bacterial 16S RNA specific sequences, which indicates that the quality of the isolated DNA is adequate for amplification. The nptⅡ specific band has been amplified in three soil samples from the transgenic trees and even treated with filtration before the DNA isolation. This indicates that nptII DNA exists in the soil, although it is still unclear whether the DNA was in the soil particles, in the soil bacteria or in the Agrobacterium comamination which was used for the E. camaldulensis transformation. Two approaches on isolation of bacterial DNA have been suggested for testing the possibility of this event in the future.展开更多
Based on the MTLL lightning return stroke model,a two-dimensional cylindrical finite-difference time-domain( FDTD) model for underground horizontal electric field was established,and the effects of distance from light...Based on the MTLL lightning return stroke model,a two-dimensional cylindrical finite-difference time-domain( FDTD) model for underground horizontal electric field was established,and the effects of distance from lightning channel,depth,soil electrical conductivity and its distribution,and return stroke current on the characteristics of underground horizontal electric field were analyzed. The results showed that as long as the electrical conductivity of soil existed,the peak of underground horizontal electric field decreased with the increase in the horizontal distance from lightning channel. When the electrical conductivity of the upper soil was much smaller than that of the lower soil,the peak of corresponding horizontal electric field was larger than the electric field peak as the electrical conductivity of the upper soil was larger than that of the lower soil. When the electrical conductivity of the upper soil was less than that of the lower soil,the growth and decay of the horizontal electric field were faster than the growth and decay as the electrical conductivity of the upper soil was larger than that of the lower soil.展开更多
To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through fi...To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through finite element analysis and engineering practices, two rows of horizontal perforated freezing pipes were designed and installed on both sides of a passage for tunnel rein- forcement, which produced the thickness and strength of frozen crust that satisfied the design requirements. These information are valuable for guiding the design and construction of river-crossing tunnels in coastal areas.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed t...Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed to experimentally evaluate the effect of synthetic fibers on the scour profile downstream of a sluice gate with a rigid apron.Experiments were performed with the same Froude number and with different weight percentages of synthetic fibers on both non-cohesive and cohesive sediments.One uniform sand was used as the non-cohesive sediment,and three different cohesive sediments were prepared by mixing different percentages of kaolinite soil with the used sand.The scouring experiments showed that the presence of synthetic fibers did not considerably affect the scour hole dimension in non-cohesive sediments.Evaluation of the scour in the cohesive sediments in silty sand(SM)texture found that an increase in the percentage of silt reduced the scour hole dimensions.The effect of synthetic fibers on scour of SM-texture-based sediments was also investigated,and the results showed that increasing the percentage of synthetic fibers decreased the scour hole dimensions.In addition,the cohesive sediments in SM texture did not have a similar non-dimensional scour profile,and the presence of synthetic fibers did not significantly affect the scour hole.展开更多
Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise ir...Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise irrigation scheduling.However,the hybrid interaction of static and dynamic environmental parameters makes it particularly difficult to accurately and reliably model the distribution of SMC.At present,deep learning wins numerous contests in machine learning and hence deep belief network (DBN) ,a breakthrough in deep learning is trained to extract the transition functions for the simulation of the cell state changes.In this study,we used a novel macroscopic cellular automata (MCA) model by combining DBN to predict the SMC over an irrigated corn field (an area of 22 km^2) in the Zhangye oasis,Northwest China.Static and dynamic environmental variables were prepared with regard to the complex hydrological processes.The widely used neural network,multi-layer perceptron (MLP) ,was utilized for comparison to DBN.The hybrid models (MLP-MCA and DBN-MCA) were calibrated and validated on SMC data within four months,i.e.June to September 2012,which were automatically observed by a wireless sensor network (WSN) .Compared with MLP-MCA,the DBN-MCA model led to a decrease in root mean squared error (RMSE) by 18%.Thus,the differences of prediction errors increased due to the propagating errors of variables,difficulties of knowing soil properties and recording irrigation amount in practice.The sequential Gaussian simulation (s Gs) was performed to assess the uncertainty of soil moisture estimations.Calculated with a threshold of SMC for each grid cell,the local uncertainty of simulated results in the post processing suggested that the probability of SMC less than 25% will be difference in different areas at different time periods.The current results showed that the DBN-MCA model performs better than the MLP-MCA model,and the DBN-MCA model provides a powerful tool for predicting SMC in highly non-linear forms.Moreover,because modeling soil moisture by using environmental variables is gaining increasing popularity,DBN techniques could contribute a lot to enhancing the calibration of MCA-based SMC estimations and hence provide an alternative approach for SMC monitoring in irrigation systems on the basis of canals.展开更多
Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 spec...Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 specimen for HCA tests is put forward. The method is a combination of the multi-layering dry-rodding method and a new under-compaction criterion in the multi-layer with under-compaction method (UCM). In the novel method, the specimen is prepared with 5 layers by dry-rodding and the UCM is used to determine the height after each layer is compacted. The density uniformity of specimen is evaluated by the freezing method to find out the best under-compaction criterion. Two HCA specimens with the same target density are prepared by the novel method and examined in the tests of pure rotation of the principal stresses. Their conformable mechanical behaviors ascertain the effectiveness of the method to produce uniform and reproducible HCA specimens. Four groups of HCA tests are carried out to investigate the anisotropic and non-coaxial behaviors of TJ-I lunar soil simulant. The results indicate that the principal stress direction, the deviator stress ratio, the stress level and the coefficient of the intermediate principal stress significantly influence the strength and deformation properties of T J-1 lunar soil simulant.展开更多
In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the per...In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark's sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.展开更多
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different...The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.展开更多
Philip’s two-term infiltration equation has been widely used to infer soil saturated hydraulic conductivity(Ks),the accuracy of which is usually influenced by the size of infiltration rings and soil conditions.Previo...Philip’s two-term infiltration equation has been widely used to infer soil saturated hydraulic conductivity(Ks),the accuracy of which is usually influenced by the size of infiltration rings and soil conditions.Previous studies have primarily focused on exploring the ring-size dependence of Ks estimations under specific soil conditions(e.g.,soil isotropy and/or uniform initial water content).This study aimed to provide a comprehensive analysis by systematically considering eight heterogeneous and anisotropic soils with nonuniform initial water contents.Specifically,we examined the validity of Philip’s infiltration equation as well as the recently proposed two forms(i.e.,infiltration and time forms)of Parlange’s infiltration equation both theoretically and in practical applications of double-ring infiltration.Then the time form of Parlange’s equation was applied to infer Ks using double-ring infiltrometer measurements with different combinations of six inner ring diameters(10,20,40,80,120,and 200 cm)and three buffer index(defined as the ratio of the difference between inner and outer ring diameters to the outer ring diameter)values(0.20,0.33,and 0.50).For each infiltrometer set,20 stochastic Ks fields were randomly generated by adopting five standard deviation values(0.1,0.3,0.5,0.7,and 0.9).Furthermore,we investigated the effects of five horizontal correlation lengths(30,60,150,300,and 600 cm)on Ks estimations.The results demonstrated that Parlange’s equation,compared to Philip’s equation,was more universal in describing the cumulative infiltration relationship for the test soils.The combination of inner ring diameter and buffer index of 40 cm and 0.2,respectively,which satisfied most of the practical requirements for determining Ks in the Soil Water Infiltration Global(SWIG)database was optimal.When the horizontal correlation length exceeded a threshold(i.e.,150 cm in our study),the inner ring diameter was required to increase to 80 cm.Our findings contribute to accurate Ks estimations of different soils using double-ring infiltrometers.展开更多
基金Project(51874202) supported by the National Natural Science Foundation of ChinaProject(2017JQ0003) supported by the Sichuan Youth Fund,China。
文摘Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.
基金Supported by Tianjin Scientific Development Foundation (No.013112811-1) .
文摘A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis.
文摘The possible horizomal transfer of transgenes is of great concern when the transgenic plants are released imo the field. To test the possible transfer of nptII of transgenic trees into soil bacteria, we have used a stool DNA preparation kit to isolate the DNA from the soils in the rhizospheres of two non- and eight transgenic Eucalyptus camaldulensis trees. All the samples have provided the corresponding PCR products in the amplification with bacterial 16S RNA specific sequences, which indicates that the quality of the isolated DNA is adequate for amplification. The nptⅡ specific band has been amplified in three soil samples from the transgenic trees and even treated with filtration before the DNA isolation. This indicates that nptII DNA exists in the soil, although it is still unclear whether the DNA was in the soil particles, in the soil bacteria or in the Agrobacterium comamination which was used for the E. camaldulensis transformation. Two approaches on isolation of bacterial DNA have been suggested for testing the possibility of this event in the future.
文摘Based on the MTLL lightning return stroke model,a two-dimensional cylindrical finite-difference time-domain( FDTD) model for underground horizontal electric field was established,and the effects of distance from lightning channel,depth,soil electrical conductivity and its distribution,and return stroke current on the characteristics of underground horizontal electric field were analyzed. The results showed that as long as the electrical conductivity of soil existed,the peak of underground horizontal electric field decreased with the increase in the horizontal distance from lightning channel. When the electrical conductivity of the upper soil was much smaller than that of the lower soil,the peak of corresponding horizontal electric field was larger than the electric field peak as the electrical conductivity of the upper soil was larger than that of the lower soil. When the electrical conductivity of the upper soil was less than that of the lower soil,the growth and decay of the horizontal electric field were faster than the growth and decay as the electrical conductivity of the upper soil was larger than that of the lower soil.
文摘To determine the appropriate soft foundation treatment for a river-crossing tunnel, freezing reinforcement design and technology were introduced based on the channel tunnel design and construction practice. Through finite element analysis and engineering practices, two rows of horizontal perforated freezing pipes were designed and installed on both sides of a passage for tunnel rein- forcement, which produced the thickness and strength of frozen crust that satisfied the design requirements. These information are valuable for guiding the design and construction of river-crossing tunnels in coastal areas.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
文摘Given that the development of scour downstream of hydraulic structures increases the risk of structural damage,it is important to find cost-effective and environmental approaches to reduce this risk.This study aimed to experimentally evaluate the effect of synthetic fibers on the scour profile downstream of a sluice gate with a rigid apron.Experiments were performed with the same Froude number and with different weight percentages of synthetic fibers on both non-cohesive and cohesive sediments.One uniform sand was used as the non-cohesive sediment,and three different cohesive sediments were prepared by mixing different percentages of kaolinite soil with the used sand.The scouring experiments showed that the presence of synthetic fibers did not considerably affect the scour hole dimension in non-cohesive sediments.Evaluation of the scour in the cohesive sediments in silty sand(SM)texture found that an increase in the percentage of silt reduced the scour hole dimensions.The effect of synthetic fibers on scour of SM-texture-based sediments was also investigated,and the results showed that increasing the percentage of synthetic fibers decreased the scour hole dimensions.In addition,the cohesive sediments in SM texture did not have a similar non-dimensional scour profile,and the presence of synthetic fibers did not significantly affect the scour hole.
基金supported by the National Natural Science Foundation of China (41130530,91325301,41401237,41571212,41371224)the Jiangsu Province Science Foundation for Youths (BK20141053)the Field Frontier Program of the Institute of Soil Science,Chinese Academy of Sciences (ISSASIP1624)
文摘Soil moisture content (SMC) is a key hydrological parameter in agriculture,meteorology and climate change,and understanding of spatio-temporal distributions of SMC in farmlands is important to address the precise irrigation scheduling.However,the hybrid interaction of static and dynamic environmental parameters makes it particularly difficult to accurately and reliably model the distribution of SMC.At present,deep learning wins numerous contests in machine learning and hence deep belief network (DBN) ,a breakthrough in deep learning is trained to extract the transition functions for the simulation of the cell state changes.In this study,we used a novel macroscopic cellular automata (MCA) model by combining DBN to predict the SMC over an irrigated corn field (an area of 22 km^2) in the Zhangye oasis,Northwest China.Static and dynamic environmental variables were prepared with regard to the complex hydrological processes.The widely used neural network,multi-layer perceptron (MLP) ,was utilized for comparison to DBN.The hybrid models (MLP-MCA and DBN-MCA) were calibrated and validated on SMC data within four months,i.e.June to September 2012,which were automatically observed by a wireless sensor network (WSN) .Compared with MLP-MCA,the DBN-MCA model led to a decrease in root mean squared error (RMSE) by 18%.Thus,the differences of prediction errors increased due to the propagating errors of variables,difficulties of knowing soil properties and recording irrigation amount in practice.The sequential Gaussian simulation (s Gs) was performed to assess the uncertainty of soil moisture estimations.Calculated with a threshold of SMC for each grid cell,the local uncertainty of simulated results in the post processing suggested that the probability of SMC less than 25% will be difference in different areas at different time periods.The current results showed that the DBN-MCA model performs better than the MLP-MCA model,and the DBN-MCA model provides a powerful tool for predicting SMC in highly non-linear forms.Moreover,because modeling soil moisture by using environmental variables is gaining increasing popularity,DBN techniques could contribute a lot to enhancing the calibration of MCA-based SMC estimations and hence provide an alternative approach for SMC monitoring in irrigation systems on the basis of canals.
基金Supported by the China National Funds for Distinguished Young Scientists(51025932)the National Natural Science Foundation of China(51179128)Program of Shanghai Academic Chief Scientist(11XD1405200)
文摘Conventional methods for hollow cylinder apparatus (HCA) specimen preparation are not applicable for T J-1 lunar soil simulant due to its wide particle size distribution. A novel method to prepare uniform T J-1 specimen for HCA tests is put forward. The method is a combination of the multi-layering dry-rodding method and a new under-compaction criterion in the multi-layer with under-compaction method (UCM). In the novel method, the specimen is prepared with 5 layers by dry-rodding and the UCM is used to determine the height after each layer is compacted. The density uniformity of specimen is evaluated by the freezing method to find out the best under-compaction criterion. Two HCA specimens with the same target density are prepared by the novel method and examined in the tests of pure rotation of the principal stresses. Their conformable mechanical behaviors ascertain the effectiveness of the method to produce uniform and reproducible HCA specimens. Four groups of HCA tests are carried out to investigate the anisotropic and non-coaxial behaviors of TJ-I lunar soil simulant. The results indicate that the principal stress direction, the deviator stress ratio, the stress level and the coefficient of the intermediate principal stress significantly influence the strength and deformation properties of T J-1 lunar soil simulant.
文摘In recent major earthquakes, the researchers have found the need for consideration of vertical seismic acceleration for the stability analysis of the man-made and natural slopes. However, in most past studies, the performance of slopes has been assessed by accounting only the horizontal seismic component of the ground motion, without giving due weightage to the effect of vertical component. In the present study, analytical expressions are derived to determine the factor of safety, yield seismic coefficient and consequently the seismic displacement of cohesionless soil slope under combined horizontal and vertical components of the ground motion. The derivation uses the Newmark's sliding block approach, in which the soil slope with a planar failure surface within the framework of conventional pseudo-static analysis is assumed to follow the Mohr-Coulomb failure criterion. The effects of vertical seismic coefficient on the stability of cohesionless slope have been studied through a set of graphical presentations for a specific range of soil parameters. It is observed that overlooking the effect of the vertical component of the ground motion on factor of safety and the displacement while designing the slope may be detrimental, resulting in the slope failure. The general expressions presented in this paper may be highly useful in the field of earthquake geotechnical engineering practice for designing the cohesionless soil slopes under combined horizontal and vertical seismic loads.
基金funded by the National Natural Science Foundation of China(32360321)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2023AAC03046,2023AAC02018)the Ningxia Key Research and Development Project(2021BEG02011).
文摘The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.
基金supported by the National Natural Science Foundation of China(Nos.42107066 and 42007004)the Natural Science Foundation of Jiangsu Province,China(No.BK20201105)。
文摘Philip’s two-term infiltration equation has been widely used to infer soil saturated hydraulic conductivity(Ks),the accuracy of which is usually influenced by the size of infiltration rings and soil conditions.Previous studies have primarily focused on exploring the ring-size dependence of Ks estimations under specific soil conditions(e.g.,soil isotropy and/or uniform initial water content).This study aimed to provide a comprehensive analysis by systematically considering eight heterogeneous and anisotropic soils with nonuniform initial water contents.Specifically,we examined the validity of Philip’s infiltration equation as well as the recently proposed two forms(i.e.,infiltration and time forms)of Parlange’s infiltration equation both theoretically and in practical applications of double-ring infiltration.Then the time form of Parlange’s equation was applied to infer Ks using double-ring infiltrometer measurements with different combinations of six inner ring diameters(10,20,40,80,120,and 200 cm)and three buffer index(defined as the ratio of the difference between inner and outer ring diameters to the outer ring diameter)values(0.20,0.33,and 0.50).For each infiltrometer set,20 stochastic Ks fields were randomly generated by adopting five standard deviation values(0.1,0.3,0.5,0.7,and 0.9).Furthermore,we investigated the effects of five horizontal correlation lengths(30,60,150,300,and 600 cm)on Ks estimations.The results demonstrated that Parlange’s equation,compared to Philip’s equation,was more universal in describing the cumulative infiltration relationship for the test soils.The combination of inner ring diameter and buffer index of 40 cm and 0.2,respectively,which satisfied most of the practical requirements for determining Ks in the Soil Water Infiltration Global(SWIG)database was optimal.When the horizontal correlation length exceeded a threshold(i.e.,150 cm in our study),the inner ring diameter was required to increase to 80 cm.Our findings contribute to accurate Ks estimations of different soils using double-ring infiltrometers.