Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-ze...Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.展开更多
In this study,a patch removing based Isogeometric analysis(PR-IGA)method is proposed to conduct the holed structural analysis with only one parametric domain,in which there are also no trimmed elements.The theoretical...In this study,a patch removing based Isogeometric analysis(PR-IGA)method is proposed to conduct the holed structural analysis with only one parametric domain,in which there are also no trimmed elements.The theoretical foundation of this novel patch removing approach is that any holed structure can be obtained by removing sub-patches(i.e.,the holes)from an intact base patch.Since the parametric domains of these patches are all meshed by rectangular grids,the elements in the resulted holed structural parametric domain could all be untrimmed rectangles under certain mapping conditions.To achieve the special condition,a systematic technique consisting of T-spline local refinement and control points substitution/adjustment is provided.Due to the intactness of parametric elements,the analysis procedure of holed structures based on the proposed PRIGA is quite simplified and efficient compared to traditional multi-patch and trimming schemes.Moreover,after the deduction of analytical sensitivities related to structural mass and mechanical responses,the PR-IGA is directly employed in the holed structural shape optimization to successfully eliminate the need for model transformation during modeling,analysis and optimization processes.Numerical examples involving analysis and shape optimization of complex holed structures are presented to demonstrate the effectiveness of the proposed method.展开更多
LOKIBASE is a non-linear isolator/dissipator device to protect pallet racking systems against the earthquake.LOKIBASE consists of the following main components:(1)two slider devices on which a rubber membrane is set u...LOKIBASE is a non-linear isolator/dissipator device to protect pallet racking systems against the earthquake.LOKIBASE consists of the following main components:(1)two slider devices on which a rubber membrane is set up(LOKI devices).LOKI devices are linear displacement dependent ones;(2)a cylindrical beam damper(“CANDLE”device).The“CANDLE”device is a non-linear displacement dependent one;(3)two anti-lifting devices(“UP-LIFT”devices);(4)a fuse plug(see www.lokibasedevice.com).The main work which is the purpose of the paper,is the optimization of the behavior of an isolator/dissipator device to mitigate the seismic action on special structures,where the stiffness values are very different in the main cross-aisle and down-aisle directions.Under seismic action,in these structures it is very important to reduce the value of the forces at the Limit state for the safeguard of human life(SLV)in the down-aisle direction as much as possible and simultaneously to use the highest damping value allowed by the building rules to reduce the LOKIBASE displacement at the Limit state for collapse prevention(SLC)in the cross-aisle direction.The goal was achieved through a cylindrical device made of stainless steel(AISI304)with an optimized shape,under large displacement during seismic action.展开更多
We have studied the morphology evolution of holed nanostructures formed by aluminum droplet epitaxy on a GaAs surface.Unique outer rings with concentric inner holed rings were observed.Further,an empirical equation to...We have studied the morphology evolution of holed nanostructures formed by aluminum droplet epitaxy on a GaAs surface.Unique outer rings with concentric inner holed rings were observed.Further,an empirical equation to describe the size distribution of the outer rings in the holed nanostructures has been established.The contour line generated by the equation provides physical insights into quantum ring formation by droplets of groupⅢmaterials onⅢ-Ⅴsubstrates.展开更多
As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental ...As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental results indicated.Moreover,the compressor performance,especially the efficiency,on the whole working range is improved.As shown by experiments,the stall margin and choked margin of the compressor are extended,and the maximum efficiency improvement is 14%at the large flowrate of 1.386.Numerical simulations were carried out to analyze the flow in the impeller and in the holes in the case of large flowrate.The results indicate that in large flowrate conditions,there is a low-pressure region on the throat part of the impeller passage,leading to the bypass flows appearing in the holes,which means the flow area at the inlet of the impeller is increased.The bypass flow can also contribute to the decrease of the Mach number at the throat part near the shroud end-wall which implies that the choked margin is expanded.Besides,as the bypass flow would inhibit the development of the vertexes in the tip clearance and suppress the flow recirculation in the shroud end-wall region,both the pressure ratio and efficiency of the compressor are improved,which agrees well with the experiments.展开更多
SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quali...SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times.展开更多
In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were invest...In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numeri...Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.展开更多
Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of d...Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of different shapes and orientations to dynamic loading is not well understood. Therefore, this study investigates the dynamic responses of hard rocks of deep underground excavation activities. Split Hopkins Pressure Bar (SHPB) tests on granite with holes of different shapes (rectangle, circle, vertical ellipse (elliptical short (ES) axis parallel to the impact load direction), and horizontal ellipse (elliptical long (EL) axis parallel to the impact load direction)) were carried out. The influence of hole shape and location on the dynamic responses was analyzed to reveal the rocks' dynamic strengths and cracking characteristics. We used the ResNet18 (convolutional neural network-based) network to recognize crack types using high-speed photographs. Moreover, a prediction model for the stress-strain response of rocks with different openings was established using Deep Neural Network (DNN). The results show that the dynamic strengths of the granite with EL and ES holes are the highest and lowest, respectively. The strength-weakening coefficient decreases first and then increases with an increase of thickness-span ratio (h/L). The weakening of the granite with ES holes is the most obvious. The ResNet18 network can improve the analyzing efficiency of the cracking mechanism, and the trained model's recognition accuracy reaches 99%. Finally, the dynamic stress-strain prediction model can predict the complete stress-strain curve well, with an accuracy above 85%.展开更多
Owing to the low p-type doping efficiency in the hole injection layers(HILs)of GaN-based ultra-violet(UV)vertical-cavity surface-emitting laser(VCSEL),effective hole injection in multi-quantum wells(MQW)is not achieve...Owing to the low p-type doping efficiency in the hole injection layers(HILs)of GaN-based ultra-violet(UV)vertical-cavity surface-emitting laser(VCSEL),effective hole injection in multi-quantum wells(MQW)is not achieved,significantly limiting the photoelectric performance of UV VCSELs.We developed a slope-shaped HIL and an EBL structure in AlGaN-based UV VCSELs.In this study,by improving hole in-jection efficiency,the hole concentration in the HIL is increased,and the hole barrier at the electron barrier layer(EBL)/HIL interface is decreased.This minimises the hindering effect of hole injection.A mathematic-al model of this structure was established using a commercial software,photonic integrated circuit simulator in three-dimension(PICS3D).We conducted simulations and theoretical analyses of the band structure and carrier concentration.Introducing polarisation doping through the Al composition gradient in the HIL en-hanced the hole concentration,thereby improving the hole injection efficiency.Furthermore,modifying the EBL eliminated the abrupt potential barrier for holes at the HIL/EBL interface,smoothing the valence band.This improved the stimulated radiative recombination rate in the MQW,increasing the laser power.There-fore,the sloped p-type layer can enhance the optoelectronic performance of UV VCSELs.展开更多
Although lots of efforts have been devoted on new less hygroscopic dopants to address problems in hole transport materials(HTM),the long-time post-oxidation and the volatilization of 4-tert-butylpyridine(tBP)are still...Although lots of efforts have been devoted on new less hygroscopic dopants to address problems in hole transport materials(HTM),the long-time post-oxidation and the volatilization of 4-tert-butylpyridine(tBP)are still issues.A new doping mechanism for spiro-OMeTAD by disulfiram(TETD)is revealed in this work.Owing to its disulfide bond,TETD can be activated easily to produce reactive sulfur for the rapid oxidation of spiro-OMeTAD in the absence of oxygen with formation of[spiro-OMeTAD•]+[SC(S)N(C_(2)H_(5))_(2)]^(-).Thus,in this situation,the Li+ion has the opportunity to coordinate tBP and fix each other in HTM film.DFT calculations suggest that the resulting favorable energy(with a△E of−1.29 eV)must come from the mutual interactions among Li^(+),TFSI^(−),and tBP,which is different from the well-known doping process that tBP would not participate in the doping reaction.As a result,the introduction of a new radical into the HTM greatly reduce device performance fluctuations due to the environmental dependence and inhibit tBP volatilizing for enhanced long-term stability.展开更多
2,2',7,7'-Tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene(Spiro)is an essential hole-transport material used in perovskite solar cells(PSCs).However,the redox reaction of Spiro and its impact a...2,2',7,7'-Tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene(Spiro)is an essential hole-transport material used in perovskite solar cells(PSCs).However,the redox reaction of Spiro and its impact at the interface with the metal electrode are not yet fully understood.In this study,we introduced a crystalline additive(CA)to regulate the redox process of Spiro and its interface with an Ag electrode.Our findings indicate that CA functions as a molecular scaffold,improving the crystallinity and stability of radicals in Spiro throughout the entire redox reaction.This enhancement increases the hole mobility of Spiro and strengthens the internal electric field,thereby improving hole extraction and transport efficiency at both interfaces.Moreover,the optimized redox reaction of Spiro reduces energy loss at the Ag electrode,significantly boosting the power conversion efficiency to 25.21%.Furthermore,CA mitigates the aggregation of lithium salt and enhances the stability of the device.Our findings contribute to a deeper understanding of hole-transport mechanisms of Spiro and emphasize the importance of reducing energy loss at the Spiro/Ag electrode interface in PSCs.展开更多
We assume exponential corrections to the entropy of 5D charged Ad S black hole solutions,which are derived within the framework of Einstein-Gauss-Bonnet gravity and nonlinear electrodynamics.Additionally,we consider t...We assume exponential corrections to the entropy of 5D charged Ad S black hole solutions,which are derived within the framework of Einstein-Gauss-Bonnet gravity and nonlinear electrodynamics.Additionally,we consider two distinct versions of 5D charged Ad S black holes by setting the parameters q→0 and k→0(where q represents the charge,and k is the non-linear parameter).We investigate these black holes in the extended phase space,where the cosmological constant is interpreted as pressure,demonstrating the first law of black hole thermodynamics.The focus extends to understanding the thermal stability or instability,as well as identifying first and second-order phase transitions.This exploration is carried out through the analysis of various thermodynamic quantities,including heat capacity at constant pressure,Gibbs free energy(GFE),Helmholtz free energy(HFE),and the trace of the Hessian matrix.In order to visualize phase transitions,identify critical points,analyze stability and provide comprehensive analysis,we have made the contour plot of the mentioned thermodynamic quantities and observed that our results are very consistent.These investigations are conducted within the context of exponentially corrected entropies,providing valuable insights into the intricate thermodynamic behavior of these 5D charged Ad S black holes under different parameter limits.展开更多
Alice opened the door and found that it led into a small passage,not much larger than a rat⁃hole:she knelt down and looked along the passage into the loveliest garden you ever saw.How she longed to get out of that dar...Alice opened the door and found that it led into a small passage,not much larger than a rat⁃hole:she knelt down and looked along the passage into the loveliest garden you ever saw.How she longed to get out of that dark hall,and wander about among those beds of bright flowers and those cool fountains,but she could not even get her head through the doorway;“and even if my head would go through,”thought poor Alice,“it would be of very little use without my shoulders.Oh,how I wish I could shut up like a telescope!I think I could,if I only know how to begin.”For,you see,so many out⁃of⁃the⁃way things had happened lately,that Alice had begun to think that very few things indeed were really impossible.展开更多
Layered rock formations are frequently encountered during the excavation of underground structures. The stability of such structures is influenced not only by the stress concentration caused by the cavities in the str...Layered rock formations are frequently encountered during the excavation of underground structures. The stability of such structures is influenced not only by the stress concentration caused by the cavities in the strata but also by the anisotropy of the layered rock mass. The interaction between them can lead to critical structural failure, such as rupture, collapse, or significant deformation within the adjacent rock mass, thereby jeopardizing operational safety. However, the coupling law and mechanism between the stress concentration resulting from the cavities and the anisotropy of a layered rock mass remain unclear. In this study, a uniaxial compression test was performed on shale specimens containing a circular hole to investigate the effects of layer inclination and circular holes on the mechanical properties, elastic energy storage, and failure behaviors of these specimens. The failure mechanism of the rock surrounding the hole was analyzed on the basis of the single plane of weakness theory and the Kirsch solution. The test results indicated pronounced anisotropy in the compressive strength, elastic modulus, and elastic strain energy of the specimens, with distinct “V”, “M” and “U”-shaped patterns correlated with varying layer inclination angles. In addition, the combined effect of stress concentration and layer inclination resulted in different failure types, which were classified into four groups according to their failure behavior. Theoretical analysis revealed that failure around circular holes in layered rock is affected by a range of variables, such as layer inclination, layer strength, lateral pressure coefficient, azimuth, and loading stress.展开更多
Astronomical extreme events or phenomena include black holes as well as nebulae systems that resemble the Milky Way. Meteorological extreme events or phenomena include tornadoes and tropical cyclones. The new high ene...Astronomical extreme events or phenomena include black holes as well as nebulae systems that resemble the Milky Way. Meteorological extreme events or phenomena include tornadoes and tropical cyclones. The new high energy state of matter expanding outwards by spin jets from the two poles of an astronomical black hole, the new high energy state of matter in a funnel-shaped vortex showed a meteorological tornado expanding downwards from a rotated disk of cumulonimbus clouds, the new high energy state of matter in a tropical cyclone and the new high energy state of a nebulae system converging celestial materials are phenomena across disciplines and multiple time-space scales that have not yet been physically explained. In this paper, the theory of orthogonal collision in the rotational contraction continuum is used to unify the understanding of diverse extreme events or phenomena through a single dynamical mechanism, offering insights into natural processes across disciplines. In the field of astronomy, the orthogonal collision of two-beam rotating and contracting particles or stars associated with centripetal forces forms a new high-energy state of matter at the collision point and the new high-energy particles have expanding forces outward to both sides of the collision plane. In the field of meteorology, the orthogonal collision of multiple horizontally rotating and contracting airflows associated with centripetal forces forms a new high energy state of matter at the collision point as well as an updraft force and a downdraft force vertically. The updraft force and downdraft force formed by the collision of anomalous wet airflows in the lower atmosphere can well indicate tornado, thunderstorm and extreme precipitation. The orthogonal collision theory can be applied to explain new states of matter in disciplines from the astronomical scale to the meteorological scale and the Planck scale.展开更多
Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the...Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the wafer.These traps can degrade the device stability and cause an excessively high threshold voltage.Surface passivation is regarded as an effective method to mitigate these impacts.In this study,we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability.The results demonstrate that surface passivation effectively reduces the interface defect density.This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability.Furthermore,we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability.This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability.展开更多
Organic molecule passivation of perovskite surfaces has emerged as a promising strategy for efficient and durable perovskite solar cells(PSCs).While many materials have been reported,the optimization of molecular stru...Organic molecule passivation of perovskite surfaces has emerged as a promising strategy for efficient and durable perovskite solar cells(PSCs).While many materials have been reported,the optimization of molecular structure for the best passivation effect remains of significant interest but lacks sufficient study.In this work,we designed and synthesized three novel donor–acceptor-donor(D-A-D)type conjugated organic small molecules with varying alkyl chain lengths to regulate the interface between perovskite and Spiro-OMeTAD.Among them,the OSIT molecule,which features an n-octyl side chain of optimal length,demonstrated a balanced interfacial contact and interaction with the perovskite surface.Beyond the passivation effect of the electron-rich C=O group on undercoordinated Pb2+defects,OSIT optimizes energy level alignment and improves charge extraction by acting as an efficient hole transport channel.As a result,PSCs with OSIT interfacial layer achieved an exceptional efficiency of 25.48%and a high open-circuit voltage of 1.18 V.Furthermore,the durability of unencapsulated devices was significantly enhanced under various environmental conditions,maintaining 93.7%of their initial efficiency after 1000 h of maximum power point tracking in a nitrogen atmosphere.This study provides valuable insights into the rational design of D-A-D type materials for effective interface modification in PSCs.展开更多
Increasing the hole expansion ratio is significant for developing high formability parts.Hole expansion tests were carried out on low carbon hot-rolled steel containing 0.11%Ti,0.072%Ti–0.03%Nb and 0.097%Ti–0.059%Nb...Increasing the hole expansion ratio is significant for developing high formability parts.Hole expansion tests were carried out on low carbon hot-rolled steel containing 0.11%Ti,0.072%Ti–0.03%Nb and 0.097%Ti–0.059%Nb,respectively.The effects of microstructure,texture,crack propagation behavior and second phase precipitation behavior on hole expansion ratio were investigated.The precipitation behavior of TiC and(Ti,Nb)C in austenite and ferrite in three groups of steel samples was calculated theoretically.The results showed that the hole expansion ratios of 0.11Ti,0.072Ti–0.03Nb and 0.097Ti–0.059Nb test steels were 51.73%,51.17%and 66.24%following simulated coiling at 600℃,respectively.The microstructure was mainly polygonal ferrite with a small amount of pearlite.The grain refinement of 0.097Ti–0.059Nb test steel and the low texture ratio of{110}//ND improved the hole expansion ratio.The low overall hole expansion ratio was due to the microstructure inhomogeneity.The microstructure uniformity was improved by the quenching and tempering treatment,and the hole expansion ratio of the three test steels was greatly increased.The fastest precipitation temperatures in the austenitic region of 0.11Ti,0.072Ti–0.03Nb and 0.097Ti–0.059Nb test steels were 880,860 and 830℃,while those in the ferrite region were 680,675 and 675℃,respectively.The addition of Nb element increased the volume free energy,so that the critical core size of the nucleation on the dislocation line increased,resulting in the decrease in the fastest precipitation temperature.展开更多
基金supported by the Ministry of Science and Technology(Grant No.2022YFA1403901)the National Natural Science Foundation of China(Grant Nos.12494594,11888101,12174428,and 12504192)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)the New Cornerstone Investigator Program,the Chinese Academy of Sciences through the Youth Innovation Promotion Association(Grant No.2022YSBR-048)the Shanghai Science and Technology Innovation Action Plan(Grant No.24LZ1400800).
文摘Systems hosting flat bands offer a powerful platform for exploring strong correlation physics.Theoretically,topological degeneracy arising in systems with non-trivial topological orders on periodic manifolds of non-zero genus can generate ideal flat bands.However,experimental realization of such geometrically engineered systems is very difficult.In this work,we demonstrate that flat planes with strategically patterned hole defects can engineer ideal flat bands.We construct two families of models:singular flat band systems where degeneracy is stabilized by non-contractible loop excitations tied to hole defects and perfectly nested van Hove systems where degeneracy arises from line excitations in momentum space.These models circumvent the need for exotic manifolds while retaining the essential features of topological flat bands.By directly linking defect engineering to degeneracy mechanisms,our results establish a scalable framework for experimentally accessible flat band design.
基金This work is supported by National Natural Science Foundation of China(Project No.11702254,SC,www.nsfc.gov.cn)Postdoctoral Science Foundation of China(Project No.2016M592306,SC,www.chinapostdoctor.org.cn)Key Scientific Research Project in Higher Education Institutions of Henan Province(Project No.17A130001,SC,www.haedu.gov.cn).
文摘In this study,a patch removing based Isogeometric analysis(PR-IGA)method is proposed to conduct the holed structural analysis with only one parametric domain,in which there are also no trimmed elements.The theoretical foundation of this novel patch removing approach is that any holed structure can be obtained by removing sub-patches(i.e.,the holes)from an intact base patch.Since the parametric domains of these patches are all meshed by rectangular grids,the elements in the resulted holed structural parametric domain could all be untrimmed rectangles under certain mapping conditions.To achieve the special condition,a systematic technique consisting of T-spline local refinement and control points substitution/adjustment is provided.Due to the intactness of parametric elements,the analysis procedure of holed structures based on the proposed PRIGA is quite simplified and efficient compared to traditional multi-patch and trimming schemes.Moreover,after the deduction of analytical sensitivities related to structural mass and mechanical responses,the PR-IGA is directly employed in the holed structural shape optimization to successfully eliminate the need for model transformation during modeling,analysis and optimization processes.Numerical examples involving analysis and shape optimization of complex holed structures are presented to demonstrate the effectiveness of the proposed method.
文摘LOKIBASE is a non-linear isolator/dissipator device to protect pallet racking systems against the earthquake.LOKIBASE consists of the following main components:(1)two slider devices on which a rubber membrane is set up(LOKI devices).LOKI devices are linear displacement dependent ones;(2)a cylindrical beam damper(“CANDLE”device).The“CANDLE”device is a non-linear displacement dependent one;(3)two anti-lifting devices(“UP-LIFT”devices);(4)a fuse plug(see www.lokibasedevice.com).The main work which is the purpose of the paper,is the optimization of the behavior of an isolator/dissipator device to mitigate the seismic action on special structures,where the stiffness values are very different in the main cross-aisle and down-aisle directions.Under seismic action,in these structures it is very important to reduce the value of the forces at the Limit state for the safeguard of human life(SLV)in the down-aisle direction as much as possible and simultaneously to use the highest damping value allowed by the building rules to reduce the LOKIBASE displacement at the Limit state for collapse prevention(SLC)in the cross-aisle direction.The goal was achieved through a cylindrical device made of stainless steel(AISI304)with an optimized shape,under large displacement during seismic action.
基金The authors gratefully acknowledge the financial support by the MRSEC Program of NSF Grant(DMR-0520550).
文摘We have studied the morphology evolution of holed nanostructures formed by aluminum droplet epitaxy on a GaAs surface.Unique outer rings with concentric inner holed rings were observed.Further,an empirical equation to describe the size distribution of the outer rings in the holed nanostructures has been established.The contour line generated by the equation provides physical insights into quantum ring formation by droplets of groupⅢmaterials onⅢ-Ⅴsubstrates.
基金supported by the National Natural Science Foundation of China(Grant No.50776056)the High Technology Research and Development Program of China("863"Program)(Grant No. 2009AA05Z201)
文摘As demonstrated by former work,the holed casing treatment can be used to expand the stall margin of a centrifugal compressor with unshrouded impeller.In addition,the choked margin can also be expanded as experimental results indicated.Moreover,the compressor performance,especially the efficiency,on the whole working range is improved.As shown by experiments,the stall margin and choked margin of the compressor are extended,and the maximum efficiency improvement is 14%at the large flowrate of 1.386.Numerical simulations were carried out to analyze the flow in the impeller and in the holes in the case of large flowrate.The results indicate that in large flowrate conditions,there is a low-pressure region on the throat part of the impeller passage,leading to the bypass flows appearing in the holes,which means the flow area at the inlet of the impeller is increased.The bypass flow can also contribute to the decrease of the Mach number at the throat part near the shroud end-wall which implies that the choked margin is expanded.Besides,as the bypass flow would inhibit the development of the vertexes in the tip clearance and suppress the flow recirculation in the shroud end-wall region,both the pressure ratio and efficiency of the compressor are improved,which agrees well with the experiments.
基金the support of the Xingliao Talent Program of Liaoning Province(No.XLYC2001004)the High Level Talents Innovation Plan of Dalian(No.2020RD02)the Fundamental Research Funds for the Central Universities(No.DUT22LAB501).
文摘SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times.
文摘In this work,the influences of surface layer slurry at different temperatures(10℃,14℃,18℃,22℃)on wax patterns deformation,shrinkage,slurry coating characteristics,and the surface quality of the casting were investigated by using a single factor variable method.The surface morphologies of the shell molds produced by different temperatures of the surface(first)layer slurries were observed via electron microscopy.Furthermore,the microscopic composition of these shell molds was obtained by EDS,and the osmotic effect of the slurry on the wax patterns at different temperatures was also assessed by the PZ-200 Contact Angle detector.The forming reasons for the surface cracks and holes of thick and large ZTC4 titanium alloy by investment casting were analyzed.The experimental results show that the surface of the shell molds prepared by the surface layer slurry with a low temperature exhibits noticeable damage,which is mainly due to the poor coating performance and the serious expansion and contraction of wax pattern at low temperatures.The second layer shell material(SiO_(2),Al_(2)O_(3))immerses into the crack area of the surface layer,contacts and reacts with the molten titanium to form surface cracks and holes in the castings.With the increase of the temperature of surface layer slurry,the damage to the shell surface tends to weaken,and the composition of the shell molds'surface becomes more uniform with less impurities.The results show that the surface layer slurry at 22℃is evenly coated on the surface of the wax patterns with appropriate thickness,and there is no surface shell mold rupture caused by sliding slurry after sand leaching.The surface layer slurry temperature is consistent with the wax pattern temperature and the workshop temperature,so there is no damage of the surface layer shell caused by expansion and contraction.Therefore,the shell mold prepared by the surface layer slurry at this temperature has good integrity,isolating the contact between the low inert shell material and the titanium liquid effectively,and the ZTC4 titanium alloy cylinder casting prepared by this shell mold is smooth,without cracks and holes.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
基金National Natural Science Foundation of China under Grant Nos.52078386 and 52308496SINOMACH Youth Science and Technology Fund under Grant No.QNJJ-PY-2022-02+2 种基金Young Elite Scientists Sponsorship Program under Grant No.BYESS2023432Fund of State Key Laboratory of Precision Blasting and Hubei Key Laboratory of Blasting Engineering,Jianghan University under Grant No.PBSKL2023A9Fund of China Railway Construction Group Co.,Ltd.under Grant No.LX19-04b。
文摘Strong surface impact will produce strong vibration,which will pose a threat to the safety of nearby buried pipelines and other important lifeline projects.Based on the verified numerical method,a comprehensive numerical parameter analysis is conducted on the key influencing factors of the vibration isolation hole(VIH),which include hole diameter,hole net spacing,hole depth,hole number,hole arrangement,and soil parameters.The results indicate that a smaller ratio of net spacing to hole diameter,the deeper the hole,the multi-row hole,the hole adoption of staggered arrangements,and better site soil conditions can enhance the efficiency of the VIH barrier.The average maximum vibration reduction efficiency within the vibration isolation area can reach 42.2%.The vibration safety of adjacent oil pipelines during a dynamic compaction projection was evaluated according to existing standards,and the measurement of the VIH was recommended to reduce excessive vibration.The single-row vibration isolation scheme and three-row staggered arrangement with the same hole parameters are suggested according to different cases.The research findings can serve as a reference for the vibration safety analysis,assessment,and control of adjacent underground facilities under the influence of strong surface impact loads.
基金funding support from the National Natural Science Foundation of China(Grant No.52374119)the opening fund of State Key Laboratory of Coal Mine Disaster Dynamics and Control(Grant No.2011DA105827-FW202209)the opening fund of State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure,East China Jiaotong University(Grant No.HJGZ2023103).
文摘Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of different shapes and orientations to dynamic loading is not well understood. Therefore, this study investigates the dynamic responses of hard rocks of deep underground excavation activities. Split Hopkins Pressure Bar (SHPB) tests on granite with holes of different shapes (rectangle, circle, vertical ellipse (elliptical short (ES) axis parallel to the impact load direction), and horizontal ellipse (elliptical long (EL) axis parallel to the impact load direction)) were carried out. The influence of hole shape and location on the dynamic responses was analyzed to reveal the rocks' dynamic strengths and cracking characteristics. We used the ResNet18 (convolutional neural network-based) network to recognize crack types using high-speed photographs. Moreover, a prediction model for the stress-strain response of rocks with different openings was established using Deep Neural Network (DNN). The results show that the dynamic strengths of the granite with EL and ES holes are the highest and lowest, respectively. The strength-weakening coefficient decreases first and then increases with an increase of thickness-span ratio (h/L). The weakening of the granite with ES holes is the most obvious. The ResNet18 network can improve the analyzing efficiency of the cracking mechanism, and the trained model's recognition accuracy reaches 99%. Finally, the dynamic stress-strain prediction model can predict the complete stress-strain curve well, with an accuracy above 85%.
文摘Owing to the low p-type doping efficiency in the hole injection layers(HILs)of GaN-based ultra-violet(UV)vertical-cavity surface-emitting laser(VCSEL),effective hole injection in multi-quantum wells(MQW)is not achieved,significantly limiting the photoelectric performance of UV VCSELs.We developed a slope-shaped HIL and an EBL structure in AlGaN-based UV VCSELs.In this study,by improving hole in-jection efficiency,the hole concentration in the HIL is increased,and the hole barrier at the electron barrier layer(EBL)/HIL interface is decreased.This minimises the hindering effect of hole injection.A mathematic-al model of this structure was established using a commercial software,photonic integrated circuit simulator in three-dimension(PICS3D).We conducted simulations and theoretical analyses of the band structure and carrier concentration.Introducing polarisation doping through the Al composition gradient in the HIL en-hanced the hole concentration,thereby improving the hole injection efficiency.Furthermore,modifying the EBL eliminated the abrupt potential barrier for holes at the HIL/EBL interface,smoothing the valence band.This improved the stimulated radiative recombination rate in the MQW,increasing the laser power.There-fore,the sloped p-type layer can enhance the optoelectronic performance of UV VCSELs.
基金supported by the National Natural Science Foundation of China(Nos.52001066,21805039,22375045,22373015 and 22271046)the Natural Science Foundation of Fujian Province(No.2023J01500)Young teacher training program of Fujian Normal University(No.SDPY2023013).
文摘Although lots of efforts have been devoted on new less hygroscopic dopants to address problems in hole transport materials(HTM),the long-time post-oxidation and the volatilization of 4-tert-butylpyridine(tBP)are still issues.A new doping mechanism for spiro-OMeTAD by disulfiram(TETD)is revealed in this work.Owing to its disulfide bond,TETD can be activated easily to produce reactive sulfur for the rapid oxidation of spiro-OMeTAD in the absence of oxygen with formation of[spiro-OMeTAD•]+[SC(S)N(C_(2)H_(5))_(2)]^(-).Thus,in this situation,the Li+ion has the opportunity to coordinate tBP and fix each other in HTM film.DFT calculations suggest that the resulting favorable energy(with a△E of−1.29 eV)must come from the mutual interactions among Li^(+),TFSI^(−),and tBP,which is different from the well-known doping process that tBP would not participate in the doping reaction.As a result,the introduction of a new radical into the HTM greatly reduce device performance fluctuations due to the environmental dependence and inhibit tBP volatilizing for enhanced long-term stability.
基金the National Natural Science Foundation of China(22209144)the Project of the Natural Science Foundation of Yunnan+4 种基金the Yunnan Revitalization Talent Support Program(202201AU070030 and 202201AT070114)the support from the National Natural Science Foundation of China(22065038)the High-Level Talents Introduction in Yunnan Province(C619300A010)the Fund for Excellent Young Scholars of Yunnan(202001AW070008)financial support from the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)under grant number RS-2024-00444389。
文摘2,2',7,7'-Tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene(Spiro)is an essential hole-transport material used in perovskite solar cells(PSCs).However,the redox reaction of Spiro and its impact at the interface with the metal electrode are not yet fully understood.In this study,we introduced a crystalline additive(CA)to regulate the redox process of Spiro and its interface with an Ag electrode.Our findings indicate that CA functions as a molecular scaffold,improving the crystallinity and stability of radicals in Spiro throughout the entire redox reaction.This enhancement increases the hole mobility of Spiro and strengthens the internal electric field,thereby improving hole extraction and transport efficiency at both interfaces.Moreover,the optimized redox reaction of Spiro reduces energy loss at the Ag electrode,significantly boosting the power conversion efficiency to 25.21%.Furthermore,CA mitigates the aggregation of lithium salt and enhances the stability of the device.Our findings contribute to a deeper understanding of hole-transport mechanisms of Spiro and emphasize the importance of reducing energy loss at the Spiro/Ag electrode interface in PSCs.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant No.RGP2/539/45。
文摘We assume exponential corrections to the entropy of 5D charged Ad S black hole solutions,which are derived within the framework of Einstein-Gauss-Bonnet gravity and nonlinear electrodynamics.Additionally,we consider two distinct versions of 5D charged Ad S black holes by setting the parameters q→0 and k→0(where q represents the charge,and k is the non-linear parameter).We investigate these black holes in the extended phase space,where the cosmological constant is interpreted as pressure,demonstrating the first law of black hole thermodynamics.The focus extends to understanding the thermal stability or instability,as well as identifying first and second-order phase transitions.This exploration is carried out through the analysis of various thermodynamic quantities,including heat capacity at constant pressure,Gibbs free energy(GFE),Helmholtz free energy(HFE),and the trace of the Hessian matrix.In order to visualize phase transitions,identify critical points,analyze stability and provide comprehensive analysis,we have made the contour plot of the mentioned thermodynamic quantities and observed that our results are very consistent.These investigations are conducted within the context of exponentially corrected entropies,providing valuable insights into the intricate thermodynamic behavior of these 5D charged Ad S black holes under different parameter limits.
文摘Alice opened the door and found that it led into a small passage,not much larger than a rat⁃hole:she knelt down and looked along the passage into the loveliest garden you ever saw.How she longed to get out of that dark hall,and wander about among those beds of bright flowers and those cool fountains,but she could not even get her head through the doorway;“and even if my head would go through,”thought poor Alice,“it would be of very little use without my shoulders.Oh,how I wish I could shut up like a telescope!I think I could,if I only know how to begin.”For,you see,so many out⁃of⁃the⁃way things had happened lately,that Alice had begun to think that very few things indeed were really impossible.
基金supported by Beijing Natural Science Foundation of China(Grant No.2244099)the China Postdoctoral Science Foundation(Grant No.2023T0025)the National Natural Science Foundation of China(Grant No.52074020).
文摘Layered rock formations are frequently encountered during the excavation of underground structures. The stability of such structures is influenced not only by the stress concentration caused by the cavities in the strata but also by the anisotropy of the layered rock mass. The interaction between them can lead to critical structural failure, such as rupture, collapse, or significant deformation within the adjacent rock mass, thereby jeopardizing operational safety. However, the coupling law and mechanism between the stress concentration resulting from the cavities and the anisotropy of a layered rock mass remain unclear. In this study, a uniaxial compression test was performed on shale specimens containing a circular hole to investigate the effects of layer inclination and circular holes on the mechanical properties, elastic energy storage, and failure behaviors of these specimens. The failure mechanism of the rock surrounding the hole was analyzed on the basis of the single plane of weakness theory and the Kirsch solution. The test results indicated pronounced anisotropy in the compressive strength, elastic modulus, and elastic strain energy of the specimens, with distinct “V”, “M” and “U”-shaped patterns correlated with varying layer inclination angles. In addition, the combined effect of stress concentration and layer inclination resulted in different failure types, which were classified into four groups according to their failure behavior. Theoretical analysis revealed that failure around circular holes in layered rock is affected by a range of variables, such as layer inclination, layer strength, lateral pressure coefficient, azimuth, and loading stress.
文摘Astronomical extreme events or phenomena include black holes as well as nebulae systems that resemble the Milky Way. Meteorological extreme events or phenomena include tornadoes and tropical cyclones. The new high energy state of matter expanding outwards by spin jets from the two poles of an astronomical black hole, the new high energy state of matter in a funnel-shaped vortex showed a meteorological tornado expanding downwards from a rotated disk of cumulonimbus clouds, the new high energy state of matter in a tropical cyclone and the new high energy state of a nebulae system converging celestial materials are phenomena across disciplines and multiple time-space scales that have not yet been physically explained. In this paper, the theory of orthogonal collision in the rotational contraction continuum is used to unify the understanding of diverse extreme events or phenomena through a single dynamical mechanism, offering insights into natural processes across disciplines. In the field of astronomy, the orthogonal collision of two-beam rotating and contracting particles or stars associated with centripetal forces forms a new high-energy state of matter at the collision point and the new high-energy particles have expanding forces outward to both sides of the collision plane. In the field of meteorology, the orthogonal collision of multiple horizontally rotating and contracting airflows associated with centripetal forces forms a new high energy state of matter at the collision point as well as an updraft force and a downdraft force vertically. The updraft force and downdraft force formed by the collision of anomalous wet airflows in the lower atmosphere can well indicate tornado, thunderstorm and extreme precipitation. The orthogonal collision theory can be applied to explain new states of matter in disciplines from the astronomical scale to the meteorological scale and the Planck scale.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92265113,12034018,12474490,and 62404248)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302300)。
文摘Strained germanium hole spin qubits are promising for quantum computing,but the devices hosting these qubits face challenges from high interface trap density,which originates from the naturally oxidized surface of the wafer.These traps can degrade the device stability and cause an excessively high threshold voltage.Surface passivation is regarded as an effective method to mitigate these impacts.In this study,we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability.The results demonstrate that surface passivation effectively reduces the interface defect density.This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability.Furthermore,we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability.This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability.
基金supported by the National Natural Science Foundation of China(22179053,22279046)Natural Science Excellent Youth Foundation of Jiangsu Provincial(BK20220112)+1 种基金Special Foundation for Carbon Peak Carbon Neutralization Technology Innovation Program of Jiangsu Province(BE2022026-2)JSPS KAKENHI(20K15385,20H02817,and 24H00486)。
文摘Organic molecule passivation of perovskite surfaces has emerged as a promising strategy for efficient and durable perovskite solar cells(PSCs).While many materials have been reported,the optimization of molecular structure for the best passivation effect remains of significant interest but lacks sufficient study.In this work,we designed and synthesized three novel donor–acceptor-donor(D-A-D)type conjugated organic small molecules with varying alkyl chain lengths to regulate the interface between perovskite and Spiro-OMeTAD.Among them,the OSIT molecule,which features an n-octyl side chain of optimal length,demonstrated a balanced interfacial contact and interaction with the perovskite surface.Beyond the passivation effect of the electron-rich C=O group on undercoordinated Pb2+defects,OSIT optimizes energy level alignment and improves charge extraction by acting as an efficient hole transport channel.As a result,PSCs with OSIT interfacial layer achieved an exceptional efficiency of 25.48%and a high open-circuit voltage of 1.18 V.Furthermore,the durability of unencapsulated devices was significantly enhanced under various environmental conditions,maintaining 93.7%of their initial efficiency after 1000 h of maximum power point tracking in a nitrogen atmosphere.This study provides valuable insights into the rational design of D-A-D type materials for effective interface modification in PSCs.
基金financially supported by the CITIC niobium steel development award Fund(M1656-2021)Central Iron and Steel Research Institute for its independent research and development fund(No.21G62460ZD).
文摘Increasing the hole expansion ratio is significant for developing high formability parts.Hole expansion tests were carried out on low carbon hot-rolled steel containing 0.11%Ti,0.072%Ti–0.03%Nb and 0.097%Ti–0.059%Nb,respectively.The effects of microstructure,texture,crack propagation behavior and second phase precipitation behavior on hole expansion ratio were investigated.The precipitation behavior of TiC and(Ti,Nb)C in austenite and ferrite in three groups of steel samples was calculated theoretically.The results showed that the hole expansion ratios of 0.11Ti,0.072Ti–0.03Nb and 0.097Ti–0.059Nb test steels were 51.73%,51.17%and 66.24%following simulated coiling at 600℃,respectively.The microstructure was mainly polygonal ferrite with a small amount of pearlite.The grain refinement of 0.097Ti–0.059Nb test steel and the low texture ratio of{110}//ND improved the hole expansion ratio.The low overall hole expansion ratio was due to the microstructure inhomogeneity.The microstructure uniformity was improved by the quenching and tempering treatment,and the hole expansion ratio of the three test steels was greatly increased.The fastest precipitation temperatures in the austenitic region of 0.11Ti,0.072Ti–0.03Nb and 0.097Ti–0.059Nb test steels were 880,860 and 830℃,while those in the ferrite region were 680,675 and 675℃,respectively.The addition of Nb element increased the volume free energy,so that the critical core size of the nucleation on the dislocation line increased,resulting in the decrease in the fastest precipitation temperature.