期刊文献+
共找到263篇文章
< 1 2 14 >
每页显示 20 50 100
An in-Pixel Histogramming TDC Based on Octonary Search and 4-Tap Phase Detection for SPAD-Based Flash LiDAR Sensor
1
作者 HE Wenjie NIE Kaiming WU Haoran 《传感技术学报》 北大核心 2025年第9期1547-1558,共12页
An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-ste... An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range. 展开更多
关键词 LiDAR sensor histogramming time-to-digital converter hybrid time of flight octonary search 4-tap phase detection
在线阅读 下载PDF
Recognition for underground voids in C-scans based on GMM-HMM
2
作者 BAI Xu LI Yuhao +4 位作者 GUO Shizeng LIU Jinlong WEN Zhitao LI Hongrui ZHANG Jiayan 《Journal of Systems Engineering and Electronics》 2025年第1期82-94,共13页
Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the in... Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the interpretation of GPR echo images often relies on manual recognition by experienced engineers.In order to address the automatic interpretation of cavity targets in GPR echo images,a recognition-algorithm based on Gaussian mixed model-hidden Markov model(GMM-HMM)is proposed,which can recognize three dimensional(3D)underground voids automatically.First,energy detection on the echo images is performed,whereby the data is preprocessed and pre-filtered.Then,edge histogram descriptor(EHD),histogram of oriented gradient(HOG),and Log-Gabor filters are used to extract features from the images.The traditional method can only be applied to 2D images and pre-processing is required for C-scan images.Finally,the aggregated features are fed into the GMM-HMM for classification and compared with two other methods,long short-term memory(LSTM)and gate recurrent unit(GRU).By testing on a simulated dataset,an accuracy rate of 90%is obtained,demonstrating the effectiveness and efficiency of our proposed method. 展开更多
关键词 ground penetrating rader(GPR) RECOGNITION edge histogram descriptor(EHD) histogram of oriented gradient(HOG) Log-Gabor filter
在线阅读 下载PDF
Advancing skin cancer detection integrating a novel unsupervised classification and enhanced imaging techniques
3
作者 MdAbdur Rahman Nur Mohammad Fahad +3 位作者 Mohaimenul Azam Khan Raiaan Mirjam Jonkman Friso De Boer Sami Azam 《CAAI Transactions on Intelligence Technology》 2025年第2期474-493,共20页
Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse exte... Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving lives.In this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic images.The authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature extraction.To achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more visible.The authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal clusters.Fine-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,respectively.The unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation. 展开更多
关键词 histogram feature optimal cluster skin lesion unsupervised classification
在线阅读 下载PDF
Proton beam therapy for esophageal cancer compared to existing treatments,including X-ray therapy and surgery
4
作者 Takashi Ono Masashi Koto 《World Journal of Gastrointestinal Surgery》 2025年第7期99-107,共9页
Esophageal cancer is one of the most difficult cancers to treat since it is often at an advanced stage at the time of symptom presentation.For locally advanced esophageal cancer,treatment options include multidiscipli... Esophageal cancer is one of the most difficult cancers to treat since it is often at an advanced stage at the time of symptom presentation.For locally advanced esophageal cancer,treatment options include multidisciplinary treatment such as surgery or definitive chemoradiotherapy.Surgery has a high local control rate because it involves excision of the cancer along with the surrounding organs;however,it is still highly invasive,although advances in surgery have reduced the burden on patients.On the other hand,chemoradiotherapy may also be applicable in cases in which surgery is inoperable owing to complications or distant lymph node metastasis.However,chemoradiotherapy using X-ray irradiation can cause late toxicities,including those to the heart.Proton beam therapy is widely used to treat esophageal cancer because of its characteristics,and some comparisons between proton beam therapy and X-ray therapy or surgery have recently been reported.This review discusses the role of proton beam therapy in esophageal cancer in comparison to X-ray therapy and surgery. 展开更多
关键词 Esophageal neoplasms Prognosis Proton beam therapy CHEMORADIOTHERAPY X-ray therapy ESOPHAGECTOMY TOXICITY Quality of life Dose volume histogram
暂未订购
Enhanced pneumonia detection:leveraging CLAHE in a mobile application
5
作者 Wilny Wilson P J D Dorathi Jayaseeli 《Biomedical Engineering Communications》 2025年第4期18-35,共18页
Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reduc... Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reducing mortality rates and optimizing healthcare resource allocation.Despite the importance of chest X-ray diagnosis,image analysis presents significant challenges,particularly in regions with limited medical expertise.This study addresses these challenges by proposing a computer-aided diagnosis system leveraging targeted image preprocessing and optimized deep learning techniques.Methods:We systematically evaluated contrast limited adaptive histogram equalization with varying clip limits for preprocessing chest X-ray images,demonstrating its effectiveness in enhancing feature visibility for diagnostic accuracy.Employing a comprehensive dataset of 5,863 X-ray images(1,583 pneumonia-negative,4,280 pneumonia-positive)collected from multiple healthcare facilities,we conducted a comparative analysis of transfer learning with pre-trained models including ResNet50v2,VGG-19,and MobileNetV2.Statistical validation was performed through 5-fold cross-validation.Results:Our results show that the contrast limited adaptive histogram equalization-enhanced approach with ResNet50v2 achieves 93.40%accuracy,outperforming VGG-19(84.90%)and MobileNetV2(89.70%).Statistical validation confirms the significance of these improvements(P<0.01).The development and optimization resulted in a lightweight mobile application(74 KB)providing rapid diagnostic support(1-2 s response time).Conclusion:The proposed approach demonstrates practical applicability in resource-constrained settings,balancing diagnostic accuracy with deployment efficiency,and offers a viable solution for computer-aided pneumonia diagnosis in areas with limited medical expertise. 展开更多
关键词 PNEUMONIA contrast limited adaptive histogram equalization deep learning mobile application chest X-ray transfer learning
在线阅读 下载PDF
Integration of YOLOv11 and Histogram Equalization for Fire and Smoke-Based Detection of Forest and Land Fires
6
作者 Christine Dewi Melati Viaeritas Vitrieco Santoso +3 位作者 Hanna Prillysca Chernovita Evangs Mailoa Stephen Abednego Philemon Abbott Po Shun Chen 《Computers, Materials & Continua》 2025年第9期5361-5379,共19页
Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and ... Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and complex backgrounds,remains a challenge for computer vision systems.This study evaluates the impact of three image enhancement techniques—Histogram Equalization(HE),Contrast Limited Adaptive Histogram Equalization(CLAHE),and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection model in identifying fires and smoke.The D-Fire dataset,consisting of 21,527 annotated images captured under diverse environmental scenarios and illumination levels,was used to train and evaluate the model.Each enhancement method was applied to the dataset before training.Model performance was assessed using multiple metrics,including Precision,Recall,mean Average Precision at 50%IoU(mAP50),F1-score,and visual inspection through bounding box results.Experimental results show that all three enhancement techniques improved detection performance.HE yielded the highest mAP50 score of 0.771,along with a balanced precision of 0.784 and recall of 0.703,demonstrating strong generalization across different conditions.DBST-LCM CLAHE achieved the highest Precision score of 79%,effectively reducing false positives,particularly in scenes with dispersed smoke or complex textures.CLAHE,with slightly lower overall metrics,contributed to improved local feature detection.Each technique showed distinct advantages:HE enhanced global contrast;CLAHE improved local structure visibility;and DBST-LCM CLAHE provided an optimal balance through dynamic block sizing and local contrast preservation.These results underline the importance of selecting preprocessing methods according to detection priorities,such as minimizing false alarms or maximizing completeness.This research does not propose a new model architecture but rather benchmarks a recent lightweight detector,YOLOv11,combined with image enhancement strategies for practical deployment in FLF monitoring.The findings support the integration of preprocessing techniques to improve detection accuracy,offering a foundation for real-time FLF detection systems on edge devices or drones,particularly in regions like Indonesia. 展开更多
关键词 Histogram equalization YOLO forest and land fire detection deep learning
在线阅读 下载PDF
An improved neighbourhood-based contrast limited adaptive histogram equalization method for contrast enhancement on retinal images
7
作者 Arjuna Arulraj Jeya Sutha Mariadhason Reena Rose Ronjalis 《International Journal of Ophthalmology(English edition)》 2025年第12期2225-2236,共12页
AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited... AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets. 展开更多
关键词 contrast limited adaptive histogram equalization retinal imaging image preprocessing contrast enhancement
原文传递
Perceptual point cloud quality assessment for immersive metaverse experience
8
作者 Baoping Cheng Lei Luo +2 位作者 Ziyang He Ce Zhu Xiaoming Tao 《Digital Communications and Networks》 2025年第3期806-817,共12页
Perceptual quality assessment for point cloud is critical for immersive metaverse experience and is a challenging task.Firstly,because point cloud is formed by unstructured 3D points that makes the topology more compl... Perceptual quality assessment for point cloud is critical for immersive metaverse experience and is a challenging task.Firstly,because point cloud is formed by unstructured 3D points that makes the topology more complex.Secondly,the quality impairment generally involves both geometric attributes and color properties,where the measurement of the geometric distortion becomes more complex.We propose a perceptual point cloud quality assessment model that follows the perceptual features of Human Visual System(HVS)and the intrinsic characteristics of the point cloud.The point cloud is first pre-processed to extract the geometric skeleton keypoints with graph filtering-based re-sampling,and local neighboring regions around the geometric skeleton keypoints are constructed by K-Nearest Neighbors(KNN)clustering.For geometric distortion,the Point Feature Histogram(PFH)is extracted as the feature descriptor,and the Earth Mover’s Distance(EMD)between the PFHs of the corresponding local neighboring regions in the reference and the distorted point clouds is calculated as the geometric quality measurement.For color distortion,the statistical moments between the corresponding local neighboring regions are computed as the color quality measurement.Finally,the global perceptual quality assessment model is obtained as the linear weighting aggregation of the geometric and color quality measurement.The experimental results on extensive datasets show that the proposed method achieves the leading performance as compared to the state-of-the-art methods with less computing time.Meanwhile,the experimental results also demonstrate the robustness of the proposed method across various distortion types.The source codes are available at https://github.com/llsurreal919/Point Cloud Quality Assessment. 展开更多
关键词 Metaverse Point cloud Quality assessment Point feature histogram Earth mover’s distance
在线阅读 下载PDF
Omnidirectional Human Behavior Recognition Method Based on Frequency-Modulated Continuous-Wave Radar
9
作者 SUN Chang WANG Shaohong LIN Yanping 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期637-645,共9页
Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship be... Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship between human posture and the radar.To address the issue of low accuracy in behavior recognition when the human body is not directly facing the radar,a method combining local outlier factor with Doppler information is proposed for the correction of multi-classifier recognition results.Initially,the information such as distance,velocity,and micro-Doppler spectrogram of the target is obtained using the fast Fourier transform and histogram of oriented gradients-support vector machine methods,followed by preliminary recognition.Subsequently,Platt scaling is employed to transform recognition results into confidence scores,and finally,the Doppler-local outlier factor method is utilized to calibrate the confidence scores,with the highest confidence classifier result considered as the recognition outcome.Experimental results demonstrate that this approach achieves an average recognition accuracy of 96.23%for comprehensive human behavior recognition in various orientations. 展开更多
关键词 frequency-modulated continuous-wave radar omnidirectional human behavior recognition histogram of oriented gradients support vector machine micro-Doppler spectrogram Doppler-local outlier factor
原文传递
Low-light image enhancement based on multi-illumination estimation and multi-scale fusion
10
作者 ZHANG Xin'ai GAO Jing +1 位作者 NIE Kaiming LUO Tao 《Optoelectronics Letters》 2025年第6期362-369,共8页
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat... To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively. 展开更多
关键词 adaptive detail preserving s curve contrast limited adaptive histogram equalization adaptive complementary gamma function low light image enhancement equalization clahe adaptive complementary gamma function acg multi scale fusion weight maps multi illumination estimation
原文传递
Whole-volume histogram analysis of spectral-computed tomography iodine maps characterizes HER2 expression in gastric cancer 被引量:1
11
作者 Wei-Ling Zhang Jing Sun +8 位作者 Rong-Fang Huang Yi Zeng Shu Chen Xiao-Peng Wang Jin-Hu Chen Yun-Bin Chen Chun-Su Zhu Zai-Sheng Ye You-Ping Xiao 《World Journal of Gastroenterology》 SCIE CAS 2024年第38期4211-4220,共10页
BACKGROUND Although surgery remains the primary treatment for gastric cancer(GC),the identification of effective alternative treatments for individuals for whom surgery is unsuitable holds significance.HER2 overexpres... BACKGROUND Although surgery remains the primary treatment for gastric cancer(GC),the identification of effective alternative treatments for individuals for whom surgery is unsuitable holds significance.HER2 overexpression occurs in approximately 15%-20%of advanced GC cases,directly affecting treatment-related decisions.Spectral-computed tomography(sCT)enables the quantification of material compositions,and sCT iodine concentration parameters have been demonstrated to be useful for the diagnosis of GC and prediction of its invasion depth,angioge-nesis,and response to systemic chemotherapy.No existing report describes the prediction of GC HER2 status through histogram analysis based on sCT iodine maps(IMs).AIM To investigate whether whole-volume histogram analysis of sCT IMs enables the prediction of the GC HER2 status.METHODS This study was performed with data from 101 patients with pathologically confirmed GC who underwent preoperative sCT examinations.Nineteen parameters were extracted via sCT IM histogram analysis:The minimum,maximum,mean,standard deviation,variance,coefficient of variation,skewness,kurtosis,entropy,percentiles(1st,5th,10th,25th,50th,75th,90th,95th,and 99th),and lesion volume.Spearman correlations of the parameters with the HER2 status and clinicopathological parameters were assessed.Receiver operating characteristic curves were used to evaluate the parameters’diagnostic performance.RESULTS Values for the histogram parameters of the maximum,mean,standard deviation,variance,entropy,and percentiles were significantly lower in the HER2+group than in the HER2–group(all P<0.05).The GC differentiation and Lauren classification correlated significantly with the HER2 status of tumor tissue(P=0.001 and 0.023,respectively).The 99th percentile had the largest area under the curve for GC HER2 status identification(0.740),with 76.2%,sensitivity,65.0%specificity,and 67.3%accuracy.All sCT IM histogram parameters correlated positively with the GC HER2 status(r=0.237-0.337,P=0.001-0.017).CONCLUSION Whole-lesion histogram parameters derived from sCT IM analysis,and especially the 99th percentile,can serve as imaging biomarkers of HER2 overexpression in GC. 展开更多
关键词 Gastric cancer Spectral computed tomography Iodine map Histogram analysis
暂未订购
Density-based ship detection in SAR images:Extension to a self-similarity perspective
12
作者 Xueqian WANG Gang LI +2 位作者 Zhizhuo JIANG Yu LIU You HE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期168-180,共13页
Nonlocal self-similarity is an important property of Synthetic Aperture Radar(SAR)images to characterize the repetitiveness of features embodied by SAR images within nonlocal areas and has been used for enhancement of... Nonlocal self-similarity is an important property of Synthetic Aperture Radar(SAR)images to characterize the repetitiveness of features embodied by SAR images within nonlocal areas and has been used for enhancement of SAR images.Existing SAR ship detectors often independently handle small sub-images cropped from a large marine SAR image and do not exploit the nonlocal self-similarity therein.In this paper,we propose a new ship detector from the perspective of nonlocal self-similarity in SAR images to improve the ship detection performance,basically including three stages:prescreening,intra-cue calculation,and inter-cue calculation.In the prescreening stage,we design a new Histogram-based Density(HD)feature to rapidly select candidate sub-images potentially containing ship targets from a large SAR image.In the intra-cue calculation stage,target cues within a single candidate sub-image are extracted.In the inter-cue calculation stage,thanks to the nonlocal self-similarity among different candidate sub-images in terms of density features,we innovatively extract a weighted superpixel-HD map to obtain accumulated intracues across all the candidate sub-images.Finally,for each candidate sub-image,we fuse its inter-cue and intra-cue to obtain final detection results.Experimental results based on real SAR images show that our newly proposed method provides a better target-to-clutter contrast and ship detection performance than those of other state-of-the-art detection approaches. 展开更多
关键词 Ship detection Synthetic aperture radar(SAR) DENSITY SELF-SIMILARITY HISTOGRAM
原文传递
Nodule Detection Using Local Binary Pattern Features to Enhance Diagnostic Decisions
13
作者 Umar Rashid Arfan Jaffar +2 位作者 Muhammad Rashid Mohammed S.Alshuhri Sheeraz Akram 《Computers, Materials & Continua》 SCIE EI 2024年第3期3377-3390,共14页
Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diamet... Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter. Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal threshold value. Secondly, geometrical features such as lines, arcs, extended arcs, and ellipses are used to detect oval shapes. Thirdly, Histogram Oriented Surface Normal Vector (HOSNV) feature descriptors can be used to identify nodules of different sizes and shapes by using a scaled and rotation-invariant texture description. Smart nodule classification was performed with the XGBoost classifier. The results are tested and validated using the Lung Image Consortium Database (LICD). The proposed method has a sensitivity of 98.49% for nodules sized 3–30 mm. 展开更多
关键词 Pulmonary nodules SEGMENTATION HISTOGRAM THRESHOLDING
在线阅读 下载PDF
Automatic area estimation of algal blooms in water bodies from UAV images using texture analysis
14
作者 Ajmeria Rahul Gundu Lokesh +2 位作者 Siddhartha Goswami R.N.Ponnalagu Radhika Sudha 《Water Science and Engineering》 EI CAS CSCD 2024年第1期62-71,共10页
Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solu... Algal blooms,the spread of algae on the surface of water bodies,have adverse effects not only on aquatic ecosystems but also on human life.The adverse effects of harmful algal blooms(HABs)necessitate a convenient solution for detection and monitoring.Unmanned aerial vehicles(UAVs)have recently emerged as a tool for algal bloom detection,efficiently providing on-demand images at high spatiotemporal resolutions.This study developed an image processing method for algal bloom area estimation from the aerial images(obtained from the internet)captured using UAVs.As a remote sensing method of HAB detection,analysis,and monitoring,a combination of histogram and texture analyses was used to efficiently estimate the area of HABs.Statistical features like entropy(using the Kullback-Leibler method)were emphasized with the aid of a gray-level co-occurrence matrix.The results showed that the orthogonal images demonstrated fewer errors,and the morphological filter best detected algal blooms in real time,with a precision of 80%.This study provided efficient image processing approaches using on-board UAVs for HAB monitoring. 展开更多
关键词 Algal bloom Image processing Texture analysis Histogram analysis Unmanned aerial vehicles
在线阅读 下载PDF
RUDIE:Robust approach for underwater digital image enhancement
15
作者 V.Sidda Reddy G.Ravi Shankar Reddy K.Sivanagi Reddy 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第4期96-108,共13页
Processing underwater digital images is critical in ocean engineering,biology,and environmental studies,focusing on challenges such as poor lighting,image de-scattering,and color restoration.Due to environmental condi... Processing underwater digital images is critical in ocean engineering,biology,and environmental studies,focusing on challenges such as poor lighting,image de-scattering,and color restoration.Due to environmental conditions on the sea floor,improving image contrast and clarity is essential for underwater navigation and obstacle avoidance.Particularly in turbid,low-visibility waters,we require robust computer vision techniques and algorithms.Over the past decade,various models for underwater image enrichment have been proposed to address quality and visibility issues under dynamic and natural lighting conditions.This research article aims to evaluate various image improvement methods and propose a robust model that improves image quality,addresses turbidity,and enhances color,ultimately improving obstacle avoidance in autonomous systems.The proposed model demonstrates high accuracy compared to traditional models.The result analysis indicates the proposed model produces images with greatly improved visibility and exceptional color accuracy.Furthermore,research can unlock new possibilities for underwater exploration,monitoring,and intervention by advancing the state-of-the-art models in this domain. 展开更多
关键词 Computer vision Digital image Fuzzy logic HISTOGRAM Image processing
在线阅读 下载PDF
Unsupervised Color Segmentation with Reconstructed Spatial Weighted Gaussian Mixture Model and Random Color Histogram
16
作者 Umer Sadiq Khan Zhen Liu +5 位作者 Fang Xu Muhib Ullah Khan Lerui Chen Touseef Ahmed Khan Muhammad Kashif Khattak Yuquan Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第3期3323-3348,共26页
Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial ... Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model.Although the Gaussian mixture model enhances the flexibility of image segmentation,it does not reflect spatial information and is sensitive to the segmentation parameter.In this study,we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model(GMM)without parameter estimation.The proposed model highlights the residual region with considerable information and constructs color saliency.Second,we incorporate the content-based color saliency as spatial information in the Gaussian mixture model.The segmentation is performed by clustering each pixel into an appropriate component according to the expectation maximization and maximum criteria.Finally,the random color histogram assigns a unique color to each cluster and creates an attractive color by default for segmentation.A random color histogram serves as an effective tool for data visualization and is instrumental in the creation of generative art,facilitating both analytical and aesthetic objectives.For experiments,we have used the Berkeley segmentation dataset BSDS-500 and Microsoft Research in Cambridge dataset.In the study,the proposed model showcases notable advancements in unsupervised image segmentation,with probabilistic rand index(PRI)values reaching 0.80,BDE scores as low as 12.25 and 12.02,compactness variations at 0.59 and 0.7,and variation of information(VI)reduced to 2.0 and 1.49 for the BSDS-500 and MSRC datasets,respectively,outperforming current leading-edge methods and yielding more precise segmentations. 展开更多
关键词 Unsupervised segmentation color saliency spatial weighted GMM random color histogram
在线阅读 下载PDF
Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory
17
作者 Ahmed H.Alhadethi Ikram Smaoui +1 位作者 Ahmed Fakhfakh Saad M.Darwish 《Computers, Materials & Continua》 SCIE EI 2024年第6期4825-4844,共20页
The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c... The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%. 展开更多
关键词 Image transmission image compression text hiding Bezier curve Histogram of Oriented Gradients(HOG) LSTM image enhancement Gaussian noise ROTATION
在线阅读 下载PDF
Rice University Rule to Determine the Number of Bins
18
作者 José Moral De La Rubia 《Open Journal of Statistics》 2024年第1期119-149,共31页
This study aims to establish a rationale for the Rice University rule in determining the number of bins in a histogram. It is grounded in the Scott and Freedman-Diaconis rules. Additionally, the accuracy of the empiri... This study aims to establish a rationale for the Rice University rule in determining the number of bins in a histogram. It is grounded in the Scott and Freedman-Diaconis rules. Additionally, the accuracy of the empirical histogram in reproducing the shape of the distribution is assessed with respect to three factors: the rule for determining the number of bins (square root, Sturges, Doane, Scott, Freedman-Diaconis, and Rice University), sample size, and distribution type. Three measures are utilized: the average distance between empirical and theoretical histograms, the level of recognition by an expert judge, and the accuracy index, which is composed of the two aforementioned measures. Mean comparisons are conducted with aligned rank transformation analysis of variance for three fixed-effects factors: sample size (20, 35, 50, 100, 200, 500, and 1000), distribution type (10 types), and empirical rule to determine the number of bins (6 rules). From the accuracy index, Rice’s rule improves with increasing sample size and is independent of distribution type. It outperforms the Friedman-Diaconis rule but falls short of Scott’s rule, except with the arcsine distribution. Its profile of means resembles the square root rule concerning distributions and Doane’s rule concerning sample sizes. These profiles differ from those of the Scott and Friedman-Diaconis rules, which resemble each other. Among the seven rules, Scott’s rule stands out in terms of accuracy, except for the arcsine distribution, and the square root rule is the least accurate. 展开更多
关键词 HISTOGRAM Class Intervals Accuracy DISTRIBUTIONS Descriptive Statistics
在线阅读 下载PDF
Pairwise Reversible Data Hiding for Medical Images with Contrast Enhancement
19
作者 Isaac Asare Boateng Lord Amoah Isogun Toluwalase Adewale 《Journal of Information Hiding and Privacy Protection》 2024年第1期1-19,共19页
Contrast enhancement in medical images has been vitalsince the prevalence of image representationsin healthcare.In this research,the PRDHMCE(pairwise reversible data hiding for medical images with contrast enhancement... Contrast enhancement in medical images has been vitalsince the prevalence of image representationsin healthcare.In this research,the PRDHMCE(pairwise reversible data hiding for medical images with contrast enhancement)algorithm is proposed as an automatic contrast enhancement(CE)method for medical images based on region ofinterest(ROI)and non-region of interest(NROI).The PRDHMCE algorithm strategically enhances the ROI aftersegmentation using histogram stretching and data embedding.An initial histogram evaluation compares histogrambins with their neighbours to select the bin with the maximum pixel count.The selected bin is set as the point forcontrast stretching with enhancement and secret data embedding in the ROI.The remaining data is embedded inthe NROIwhile reducing image distortions.Experimentalresultsshowthe effectiveness of PRDHMCE in optimallyimproving image contrast and increasing embedding capacity comparedwith existing methods based on qualitativeand objective metricssuch as peak signal-to-noise ratio(PSNR),structuralsimilarity index(SSIM),relative contrasterror(RCE),relative mean brightness error(RMBE)and mean opinion score(MOS).Additionally,PRDHMCErecovers medical images fully without data loss. 展开更多
关键词 Target histogram stretching pairwise histogram embedding reversible data hiding
在线阅读 下载PDF
A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence 被引量:7
20
作者 窦喜英 韩立国 +3 位作者 王恩利 董雪华 杨庆 鄢高韩 《Applied Geophysics》 SCIE CSCD 2014年第2期179-185,253,共8页
Eigenstructure-based coherence attributes are efficient and mature techniques for large-scale fracture detection. However, in horizontally bedded and continuous strata, buried fractures in high grayscale value zones a... Eigenstructure-based coherence attributes are efficient and mature techniques for large-scale fracture detection. However, in horizontally bedded and continuous strata, buried fractures in high grayscale value zones are difficult to detect. Furthermore, middleand small-scale fractures in fractured zones where migration image energies are usually not concentrated perfectly are also hard to detect because of the fuzzy, clouded shadows owing to low grayscale values. A new fracture enhancement method combined with histogram equalization is proposed to solve these problems. With this method, the contrast between discontinuities and background in coherence images is increased, linear structures are highlighted by stepwise adjustment of the threshold of the coherence image, and fractures are detected at different scales. Application of the method shows that it can also improve fracture cognition and accuracy. 展开更多
关键词 FAULT FRACTURE histogram equalization COHERENCE ENHANCEMENT
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部