期刊文献+
共找到264篇文章
< 1 2 14 >
每页显示 20 50 100
An in-Pixel Histogramming TDC Based on Octonary Search and 4-Tap Phase Detection for SPAD-Based Flash LiDAR Sensor
1
作者 HE Wenjie NIE Kaiming WU Haoran 《传感技术学报》 北大核心 2025年第9期1547-1558,共12页
An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-ste... An in-pixel histogramming time-to-digital converter(hTDC)based on octonary search and 4-tap phase detection is presented,aiming to improve frame rate while ensuring high precicion.The proposed hTDC is a 12-bit two-step converter consisting of a 6-bit coarse quantization and a 6-bit fine quantization,which supports a time resolution of 120 ps and multiphoton counting up to 2 GHz without a GHz reference frequency.The proposed hTDC is designed in 0.11μm CMOS process with an area consumption of 6900μm^(2).The data from a behavioral-level model is imported into the designed hTDC circuit for simulation verification.The post-simulation results show that the proposed hTDC achieves 0.8%depth precision in 9 m range for short-range system design specifications and 0.2%depth precision in 48 m range for long-range system design specifications.Under 30×10^(3) lux background light conditions,the proposed hTDC can be used for SPAD-based flash LiDAR sensor to achieve a frame rate to 40 fps with 200 ps resolution in 9 m range. 展开更多
关键词 LiDAR sensor histogramming time-to-digital converter hybrid time of flight octonary search 4-tap phase detection
在线阅读 下载PDF
Recognition for underground voids in C-scans based on GMM-HMM
2
作者 BAI Xu LI Yuhao +4 位作者 GUO Shizeng LIU Jinlong WEN Zhitao LI Hongrui ZHANG Jiayan 《Journal of Systems Engineering and Electronics》 2025年第1期82-94,共13页
Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the in... Ground penetrating radar(GPR),as a fast,efficient,and non-destructive detection device,holds great potential for the detection of shallow subsurface environments,such as urban road subsurface monitoring.However,the interpretation of GPR echo images often relies on manual recognition by experienced engineers.In order to address the automatic interpretation of cavity targets in GPR echo images,a recognition-algorithm based on Gaussian mixed model-hidden Markov model(GMM-HMM)is proposed,which can recognize three dimensional(3D)underground voids automatically.First,energy detection on the echo images is performed,whereby the data is preprocessed and pre-filtered.Then,edge histogram descriptor(EHD),histogram of oriented gradient(HOG),and Log-Gabor filters are used to extract features from the images.The traditional method can only be applied to 2D images and pre-processing is required for C-scan images.Finally,the aggregated features are fed into the GMM-HMM for classification and compared with two other methods,long short-term memory(LSTM)and gate recurrent unit(GRU).By testing on a simulated dataset,an accuracy rate of 90%is obtained,demonstrating the effectiveness and efficiency of our proposed method. 展开更多
关键词 ground penetrating rader(GPR) RECOGNITION edge histogram descriptor(EHD) histogram of oriented gradient(HOG) Log-Gabor filter
在线阅读 下载PDF
Advancing skin cancer detection integrating a novel unsupervised classification and enhanced imaging techniques
3
作者 MdAbdur Rahman Nur Mohammad Fahad +3 位作者 Mohaimenul Azam Khan Raiaan Mirjam Jonkman Friso De Boer Sami Azam 《CAAI Transactions on Intelligence Technology》 2025年第2期474-493,共20页
Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse exte... Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving lives.In this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic images.The authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature extraction.To achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more visible.The authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal clusters.Fine-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,respectively.The unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation. 展开更多
关键词 histogram feature optimal cluster skin lesion unsupervised classification
在线阅读 下载PDF
Proton beam therapy for esophageal cancer compared to existing treatments,including X-ray therapy and surgery
4
作者 Takashi Ono Masashi Koto 《World Journal of Gastrointestinal Surgery》 2025年第7期99-107,共9页
Esophageal cancer is one of the most difficult cancers to treat since it is often at an advanced stage at the time of symptom presentation.For locally advanced esophageal cancer,treatment options include multidiscipli... Esophageal cancer is one of the most difficult cancers to treat since it is often at an advanced stage at the time of symptom presentation.For locally advanced esophageal cancer,treatment options include multidisciplinary treatment such as surgery or definitive chemoradiotherapy.Surgery has a high local control rate because it involves excision of the cancer along with the surrounding organs;however,it is still highly invasive,although advances in surgery have reduced the burden on patients.On the other hand,chemoradiotherapy may also be applicable in cases in which surgery is inoperable owing to complications or distant lymph node metastasis.However,chemoradiotherapy using X-ray irradiation can cause late toxicities,including those to the heart.Proton beam therapy is widely used to treat esophageal cancer because of its characteristics,and some comparisons between proton beam therapy and X-ray therapy or surgery have recently been reported.This review discusses the role of proton beam therapy in esophageal cancer in comparison to X-ray therapy and surgery. 展开更多
关键词 Esophageal neoplasms Prognosis Proton beam therapy CHEMORADIOTHERAPY X-ray therapy ESOPHAGECTOMY TOXICITY Quality of life Dose volume histogram
暂未订购
Enhanced pneumonia detection:leveraging CLAHE in a mobile application
5
作者 Wilny Wilson P J D Dorathi Jayaseeli 《Biomedical Engineering Communications》 2025年第4期18-35,共18页
Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reduc... Background:Pneumonia remains a critical global health challenge,manifesting as a severe respiratory infection caused by viruses,bacteria,and fungi.Early detection is paramount for effective treatment,potentially reducing mortality rates and optimizing healthcare resource allocation.Despite the importance of chest X-ray diagnosis,image analysis presents significant challenges,particularly in regions with limited medical expertise.This study addresses these challenges by proposing a computer-aided diagnosis system leveraging targeted image preprocessing and optimized deep learning techniques.Methods:We systematically evaluated contrast limited adaptive histogram equalization with varying clip limits for preprocessing chest X-ray images,demonstrating its effectiveness in enhancing feature visibility for diagnostic accuracy.Employing a comprehensive dataset of 5,863 X-ray images(1,583 pneumonia-negative,4,280 pneumonia-positive)collected from multiple healthcare facilities,we conducted a comparative analysis of transfer learning with pre-trained models including ResNet50v2,VGG-19,and MobileNetV2.Statistical validation was performed through 5-fold cross-validation.Results:Our results show that the contrast limited adaptive histogram equalization-enhanced approach with ResNet50v2 achieves 93.40%accuracy,outperforming VGG-19(84.90%)and MobileNetV2(89.70%).Statistical validation confirms the significance of these improvements(P<0.01).The development and optimization resulted in a lightweight mobile application(74 KB)providing rapid diagnostic support(1-2 s response time).Conclusion:The proposed approach demonstrates practical applicability in resource-constrained settings,balancing diagnostic accuracy with deployment efficiency,and offers a viable solution for computer-aided pneumonia diagnosis in areas with limited medical expertise. 展开更多
关键词 PNEUMONIA contrast limited adaptive histogram equalization deep learning mobile application chest X-ray transfer learning
在线阅读 下载PDF
Integration of YOLOv11 and Histogram Equalization for Fire and Smoke-Based Detection of Forest and Land Fires
6
作者 Christine Dewi Melati Viaeritas Vitrieco Santoso +3 位作者 Hanna Prillysca Chernovita Evangs Mailoa Stephen Abednego Philemon Abbott Po Shun Chen 《Computers, Materials & Continua》 2025年第9期5361-5379,共19页
Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and ... Early detection of Forest and Land Fires(FLF)is essential to prevent the rapid spread of fire as well as minimize environmental damage.However,accurate detection under real-world conditions,such as low light,haze,and complex backgrounds,remains a challenge for computer vision systems.This study evaluates the impact of three image enhancement techniques—Histogram Equalization(HE),Contrast Limited Adaptive Histogram Equalization(CLAHE),and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection model in identifying fires and smoke.The D-Fire dataset,consisting of 21,527 annotated images captured under diverse environmental scenarios and illumination levels,was used to train and evaluate the model.Each enhancement method was applied to the dataset before training.Model performance was assessed using multiple metrics,including Precision,Recall,mean Average Precision at 50%IoU(mAP50),F1-score,and visual inspection through bounding box results.Experimental results show that all three enhancement techniques improved detection performance.HE yielded the highest mAP50 score of 0.771,along with a balanced precision of 0.784 and recall of 0.703,demonstrating strong generalization across different conditions.DBST-LCM CLAHE achieved the highest Precision score of 79%,effectively reducing false positives,particularly in scenes with dispersed smoke or complex textures.CLAHE,with slightly lower overall metrics,contributed to improved local feature detection.Each technique showed distinct advantages:HE enhanced global contrast;CLAHE improved local structure visibility;and DBST-LCM CLAHE provided an optimal balance through dynamic block sizing and local contrast preservation.These results underline the importance of selecting preprocessing methods according to detection priorities,such as minimizing false alarms or maximizing completeness.This research does not propose a new model architecture but rather benchmarks a recent lightweight detector,YOLOv11,combined with image enhancement strategies for practical deployment in FLF monitoring.The findings support the integration of preprocessing techniques to improve detection accuracy,offering a foundation for real-time FLF detection systems on edge devices or drones,particularly in regions like Indonesia. 展开更多
关键词 Histogram equalization YOLO forest and land fire detection deep learning
在线阅读 下载PDF
An improved neighbourhood-based contrast limited adaptive histogram equalization method for contrast enhancement on retinal images
7
作者 Arjuna Arulraj Jeya Sutha Mariadhason Reena Rose Ronjalis 《International Journal of Ophthalmology(English edition)》 2025年第12期2225-2236,共12页
AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited... AIM:To find the effective contrast enhancement method on retinal images for effective segmentation of retinal features.METHODS:A novel image preprocessing method that used neighbourhood-based improved contrast limited adaptive histogram equalization(NICLAHE)to improve retinal image contrast was suggested to aid in the accurate identification of retinal disorders and improve the visibility of fine retinal structures.Additionally,a minimal-order filter was applied to effectively denoise the images without compromising important retinal structures.The novel NICLAHE algorithm was inspired by the classical CLAHE algorithm,but enhanced it by selecting the clip limits and tile sized in a dynamical manner relative to the pixel values in an image as opposed to using fixed values.It was evaluated on the Drive and high-resolution fundus(HRF)datasets on conventional quality measures.RESULTS:The new proposed preprocessing technique was applied to two retinal image databases,Drive and HRF,with four quality metrics being,root mean square error(RMSE),peak signal to noise ratio(PSNR),root mean square contrast(RMSC),and overall contrast.The technique performed superiorly on both the data sets as compared to the traditional enhancement methods.In order to assess the compatibility of the method with automated diagnosis,a deep learning framework named ResNet was applied in the segmentation of retinal blood vessels.Sensitivity,specificity,precision and accuracy were used to analyse the performance.NICLAHE–enhanced images outperformed the traditional techniques on both the datasets with improved accuracy.CONCLUSION:NICLAHE provides better results than traditional methods with less error and improved contrastrelated values.These enhanced images are subsequently measured by sensitivity,specificity,precision,and accuracy,which yield a better result in both datasets. 展开更多
关键词 contrast limited adaptive histogram equalization retinal imaging image preprocessing contrast enhancement
原文传递
Perceptual point cloud quality assessment for immersive metaverse experience
8
作者 Baoping Cheng Lei Luo +2 位作者 Ziyang He Ce Zhu Xiaoming Tao 《Digital Communications and Networks》 2025年第3期806-817,共12页
Perceptual quality assessment for point cloud is critical for immersive metaverse experience and is a challenging task.Firstly,because point cloud is formed by unstructured 3D points that makes the topology more compl... Perceptual quality assessment for point cloud is critical for immersive metaverse experience and is a challenging task.Firstly,because point cloud is formed by unstructured 3D points that makes the topology more complex.Secondly,the quality impairment generally involves both geometric attributes and color properties,where the measurement of the geometric distortion becomes more complex.We propose a perceptual point cloud quality assessment model that follows the perceptual features of Human Visual System(HVS)and the intrinsic characteristics of the point cloud.The point cloud is first pre-processed to extract the geometric skeleton keypoints with graph filtering-based re-sampling,and local neighboring regions around the geometric skeleton keypoints are constructed by K-Nearest Neighbors(KNN)clustering.For geometric distortion,the Point Feature Histogram(PFH)is extracted as the feature descriptor,and the Earth Mover’s Distance(EMD)between the PFHs of the corresponding local neighboring regions in the reference and the distorted point clouds is calculated as the geometric quality measurement.For color distortion,the statistical moments between the corresponding local neighboring regions are computed as the color quality measurement.Finally,the global perceptual quality assessment model is obtained as the linear weighting aggregation of the geometric and color quality measurement.The experimental results on extensive datasets show that the proposed method achieves the leading performance as compared to the state-of-the-art methods with less computing time.Meanwhile,the experimental results also demonstrate the robustness of the proposed method across various distortion types.The source codes are available at https://github.com/llsurreal919/Point Cloud Quality Assessment. 展开更多
关键词 Metaverse Point cloud Quality assessment Point feature histogram Earth mover’s distance
在线阅读 下载PDF
Omnidirectional Human Behavior Recognition Method Based on Frequency-Modulated Continuous-Wave Radar
9
作者 SUN Chang WANG Shaohong LIN Yanping 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期637-645,共9页
Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship be... Frequency-modulated continuous-wave radar enables the non-contact and privacy-preserving recognition of human behavior.However,the accuracy of behavior recognition is directly influenced by the spatial relationship between human posture and the radar.To address the issue of low accuracy in behavior recognition when the human body is not directly facing the radar,a method combining local outlier factor with Doppler information is proposed for the correction of multi-classifier recognition results.Initially,the information such as distance,velocity,and micro-Doppler spectrogram of the target is obtained using the fast Fourier transform and histogram of oriented gradients-support vector machine methods,followed by preliminary recognition.Subsequently,Platt scaling is employed to transform recognition results into confidence scores,and finally,the Doppler-local outlier factor method is utilized to calibrate the confidence scores,with the highest confidence classifier result considered as the recognition outcome.Experimental results demonstrate that this approach achieves an average recognition accuracy of 96.23%for comprehensive human behavior recognition in various orientations. 展开更多
关键词 frequency-modulated continuous-wave radar omnidirectional human behavior recognition histogram of oriented gradients support vector machine micro-Doppler spectrogram Doppler-local outlier factor
原文传递
Low-light image enhancement based on multi-illumination estimation and multi-scale fusion
10
作者 ZHANG Xin'ai GAO Jing +1 位作者 NIE Kaiming LUO Tao 《Optoelectronics Letters》 2025年第6期362-369,共8页
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat... To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively. 展开更多
关键词 adaptive detail preserving s curve contrast limited adaptive histogram equalization adaptive complementary gamma function low light image enhancement equalization clahe adaptive complementary gamma function acg multi scale fusion weight maps multi illumination estimation
原文传递
A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence 被引量:7
11
作者 窦喜英 韩立国 +3 位作者 王恩利 董雪华 杨庆 鄢高韩 《Applied Geophysics》 SCIE CSCD 2014年第2期179-185,253,共8页
Eigenstructure-based coherence attributes are efficient and mature techniques for large-scale fracture detection. However, in horizontally bedded and continuous strata, buried fractures in high grayscale value zones a... Eigenstructure-based coherence attributes are efficient and mature techniques for large-scale fracture detection. However, in horizontally bedded and continuous strata, buried fractures in high grayscale value zones are difficult to detect. Furthermore, middleand small-scale fractures in fractured zones where migration image energies are usually not concentrated perfectly are also hard to detect because of the fuzzy, clouded shadows owing to low grayscale values. A new fracture enhancement method combined with histogram equalization is proposed to solve these problems. With this method, the contrast between discontinuities and background in coherence images is increased, linear structures are highlighted by stepwise adjustment of the threshold of the coherence image, and fractures are detected at different scales. Application of the method shows that it can also improve fracture cognition and accuracy. 展开更多
关键词 FAULT FRACTURE histogram equalization COHERENCE ENHANCEMENT
在线阅读 下载PDF
Application of Image Enhancement Techniques to Potential Field Data 被引量:6
12
作者 张丽莉 郝天珧 +1 位作者 吴健生 王家林 《Applied Geophysics》 SCIE CSCD 2005年第3期145-152,i0001,共9页
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec... In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement. 展开更多
关键词 image enhancement histogram equalization Radon transform and potential field data
在线阅读 下载PDF
Coherence cube enhancement based on local histogram specification 被引量:6
13
作者 王季 陆文凯 《Applied Geophysics》 SCIE CSCD 2010年第3期249-256,293,共9页
Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished... Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished on coherence sections (time slices or profiles) due to interferences from adjacent strata, especially these with strong reflectivity. In this paper, we propose a coherence enhancement method which applies local histogram specification (LHS) techniques to enhance subtle faults or fractures in the coherence cubes. Unlike the traditional histogram specification (HS) algorithm, our method processes 3D coherence data without discretization. This method partitions a coherence cube into many sub-blocks and self-adaptively specifies the target distribution in each block based on the whole distribution of the coherence cube. Furthermore, the neighboring blocks are partially overlapped to reduce the edge effect. Applications to real datasets show that the new method enhances the details of subtle faults and fractures noticeably. 展开更多
关键词 coherence cube histogram specification small fault seismic interpretation
在线阅读 下载PDF
方阱链状分子临界性质的Monte Carlo模拟 被引量:2
14
作者 李丽妍 孙方方 +1 位作者 陈志同 蔡钧 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第11期2332-2338,共7页
在巨正则系综下对阱宽为λ=1.5,链长分别为4、8、16的方阱链状流体实施Monte Carlo模拟,采用建立在完整标度基础上的无偏的Q-参数方法,通过histogram reweighting技术以及有限尺寸标度理论得到了热力学极限下该系列流体的临界温度和临... 在巨正则系综下对阱宽为λ=1.5,链长分别为4、8、16的方阱链状流体实施Monte Carlo模拟,采用建立在完整标度基础上的无偏的Q-参数方法,通过histogram reweighting技术以及有限尺寸标度理论得到了热力学极限下该系列流体的临界温度和临界密度.模拟结果表明,方阱链流体的临界温度随着链长的增加而升高.并且不同链长方阱流体的临界温度均低于已报道的结果.由于本文所采用的完整标度的无偏性,我们估计的临界点更加准确.并且流体的临界温度与链长之间的关系与Flory-Huggins理论相一致.我们还预测了无限链长方阱流体的临界温度,比已有结果略高. 展开更多
关键词 临界点 巨正则系综 HISTOGRAM reweighting 完整标度 连续构型偏倚
在线阅读 下载PDF
A New Adaptive Image Segmentation Method 被引量:2
15
作者 沈庭芝 方子文 +1 位作者 吴玲艳 王飞 《Journal of Beijing Institute of Technology》 EI CAS 1998年第3期316-321,共6页
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ... Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation. 展开更多
关键词 genetic algorithm image segmentation entropy of histogram segmenting threshold
在线阅读 下载PDF
Integration of Lab model and EHOG for human appearance matching across disjoint camera views 被引量:2
16
作者 杨彪 林国余 张为公 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期422-427,共6页
The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as ill... The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method. 展开更多
关键词 human appearance matching Lab model extended histogram of oriented gradients (EHOG) disjoint camera views
在线阅读 下载PDF
分布式网络中的一种高效top-k求解方法研究 被引量:1
17
作者 李雷 李晓东 刘欣阳 《计算机工程与应用》 CSCD 北大核心 2010年第18期89-92,共4页
提出了一种新的算法,来解决在分布式的环境中top-k求解问题(求出全局数值最大的前k名)。之前的研究,例如TA、TPUT、HT算法,都会消耗大量的带宽。KLEE算法虽然能够大大地减少带宽的消耗,却不能给出精确解。而提出的算法FT由于添加了一个... 提出了一种新的算法,来解决在分布式的环境中top-k求解问题(求出全局数值最大的前k名)。之前的研究,例如TA、TPUT、HT算法,都会消耗大量的带宽。KLEE算法虽然能够大大地减少带宽的消耗,却不能给出精确解。而提出的算法FT由于添加了一个预处理阶段并且使用了histogram bloom技术,即能有效地减少带宽的消耗,又能给出精确解。实现了FT和相关的算法,并进行了全面的比较。比较是建立在真实的数据集和根据不同情况合成的数据集的基础上的。实验结果显示FT在带宽消耗上面,相对于其他算法有很大的改进和优势。 展开更多
关键词 top-k算法 分布式网络 HISTOGRAM blooms技术
在线阅读 下载PDF
Estimation of illumination chromaticity via adaptive reduced relevance vector machine
18
作者 丁二锐 曾平 +1 位作者 姚勇 王义峰 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期202-205,共4页
A new regression algorithm of an adaptive reduced relevance vector machine is proposed to estimate the illumination chromaticity of an image for the purpose of color constancy. Within the framework of sparse Bayesian ... A new regression algorithm of an adaptive reduced relevance vector machine is proposed to estimate the illumination chromaticity of an image for the purpose of color constancy. Within the framework of sparse Bayesian learning, the algorithm extends the relevance vector machine by combining global and local kernels adaptively in the form of multiple kernels, and the improved locality preserving projection (LLP) is then applied to reduce the column dimension of the multiple kernel input matrix to achieve less training time. To estimate the illumination chromaticity, the algorithm is trained by fuzzy central values of chromaticity histograms of a set of images and the corresponding illuminants. Experiments with real images indicate that the proposed algorithm performs better than the support vector machine and the relevance vector machine while requiring less training time than the relevance vector machine. 展开更多
关键词 color constancy illumination estimation chromaticity histogram adaptive reduced relevance vector machine
在线阅读 下载PDF
An improved mean shift tracking algorithm based on double weighted color histogram
19
作者 金永 王振 +1 位作者 王召巴 陈友兴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期171-175,共5页
In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weake... In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm. 展开更多
关键词 object tracking mean shift color histogram model updating
在线阅读 下载PDF
On-road vehicle verification based on VS-HOG and ELM
20
作者 范延军 张雷 张为公 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期67-73,共7页
A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertic... A solution is proposed for the real-time vehicle verification which is an important problem for numerous on- road vehicle applications. First, based on the vertical symmetry characteristics of vehicle images, a vertical symmetrical histograms of oriented gradients (VS-HOG) descriptor is proposed for extracting the image features. In the classification stage, an extreme learning machine (ELM) is used to improve the real-time performance. Experimental data demonstrate that, compared with other classical methods, the vehicle verification algorithm based on VS-HOG and ELM achieves a better trade-off between cost and performance. The computational cost is reduced by using the algorithm, while keeping the performance loss as low as possible. Furthermore, experimental results further show that the proposed vehicle verification method is suitable for on-road vehicle applications due to its better performance both in efficiency and accuracy. 展开更多
关键词 histogram of oriented gradients (HOG) vertical symmetrical histogram of oriented gradients (VS-HOG) vehicle verification extreme learning machine (ELM)
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部