Histogram and kernel estimators are usually regarded as the two main classical data-based nonparametric tools to estimate the underlying density functions for some given data sets. In this paper we will integrate them...Histogram and kernel estimators are usually regarded as the two main classical data-based nonparametric tools to estimate the underlying density functions for some given data sets. In this paper we will integrate them and define a histogram-kernel error based on the integrated square error between histogram and binned kernel density estimator, and then exploit its asymptotic properties. 3ust as indicated in this paper, the histogram-kernel error only depends on the choice of bin width and the data for the given prior kernel densities. The asymptotic optimal bin width is derived by minimizing the mean histogram-kernel error. By comparing with Scott's optimal bin width formula for a histogram, a new method is proposed to construct the data-based histogram without knowledge of the underlying density function. Monte Carlo study is used to verify the usefulness of our method for different kinds of density functions and sample sizes.展开更多
由于红外图像对比度低、色彩信息匮乏且灰度级动态范围小,基于红外成像的目标跟踪一直是本领域研究的难点和重点。提出了一种融合灰度核直方图和SURF(speeded up robust features)特征的红外目标跟踪算法。在首帧采用灰度核直方图和SUR...由于红外图像对比度低、色彩信息匮乏且灰度级动态范围小,基于红外成像的目标跟踪一直是本领域研究的难点和重点。提出了一种融合灰度核直方图和SURF(speeded up robust features)特征的红外目标跟踪算法。在首帧采用灰度核直方图和SURF特征分别描述目标模板,在以后每帧中利用均值漂移算法快速找到局部最优解。考虑到灰度直方图特征信息量少,跟踪误差逐渐累积,采用改进的SURF特征点匹配算法估算当前帧目标尺度和中心位置,及时修正累积误差,避免跟踪窗口漂移且能自适应调整跟踪窗口大小,此外更新目标模板,最终准确跟踪目标。真实场景实验结果表明,本文算法在目标外观发生较大尺度变化、周边具有相似表观物体时能稳定跟踪目标,具有很强的稳健性,且满足实时性要求。展开更多
基金Supported by the National Natural Science Foundation of China (No. 70371018, 70572074)
文摘Histogram and kernel estimators are usually regarded as the two main classical data-based nonparametric tools to estimate the underlying density functions for some given data sets. In this paper we will integrate them and define a histogram-kernel error based on the integrated square error between histogram and binned kernel density estimator, and then exploit its asymptotic properties. 3ust as indicated in this paper, the histogram-kernel error only depends on the choice of bin width and the data for the given prior kernel densities. The asymptotic optimal bin width is derived by minimizing the mean histogram-kernel error. By comparing with Scott's optimal bin width formula for a histogram, a new method is proposed to construct the data-based histogram without knowledge of the underlying density function. Monte Carlo study is used to verify the usefulness of our method for different kinds of density functions and sample sizes.
文摘由于红外图像对比度低、色彩信息匮乏且灰度级动态范围小,基于红外成像的目标跟踪一直是本领域研究的难点和重点。提出了一种融合灰度核直方图和SURF(speeded up robust features)特征的红外目标跟踪算法。在首帧采用灰度核直方图和SURF特征分别描述目标模板,在以后每帧中利用均值漂移算法快速找到局部最优解。考虑到灰度直方图特征信息量少,跟踪误差逐渐累积,采用改进的SURF特征点匹配算法估算当前帧目标尺度和中心位置,及时修正累积误差,避免跟踪窗口漂移且能自适应调整跟踪窗口大小,此外更新目标模板,最终准确跟踪目标。真实场景实验结果表明,本文算法在目标外观发生较大尺度变化、周边具有相似表观物体时能稳定跟踪目标,具有很强的稳健性,且满足实时性要求。